UNIT-1
OBJECT ORIENTED
THINKING

Programming Paradigms

* The most important aspect of C++ is its ability
to support many different programming
paradigms

e procedural abstraction
e modular abstraction
e data abstraction

e object oriented programming (this is discussed
later, once we learn about the concept of
inheritance)

Procedural Abstraction

* This is where you build a “fence” around
program segments, preventing some parts of
the program from “seeing” how tasks are
being accomplished.

* Any use of globals causes side effects that may
not be predictable, reducing the viability of
procedural abstraction

Modular Abstraction

e With modular abstraction, we build a “screen”
surrounding the internal structure of our program
prohibiting programmers from accessing the data
except through specified functions.

* Many times data structures (e.g., structures)
common to a module are placed in a header files
along with prototypes (allows external references)

Modular Abstraction

* The corresponding functions that manipulate the
data are then placed in an implementation file.

 Modules (files) can be compiled separately, allowing
users access only to the object (.0) files

 We progress one small step toward OOP by thinking
about the actions that need to take place on data...

Modular Abstraction

* We implement modular abstraction by
separating out various

functions/structures/classes into multiple .cpp
and .h files.

e .cpp files contain the implementation of our
functions

* .hfiles contain the prototypes, class and
structure definitions.

Modular Abstraction

e We then include the .h files in modules that
need access to the prototypes, structures, or
class declarations:

e #include “myfile.h”
e (Notice the double quotes!)
* We then compile programs (on unix) by:
e g++ main.cpp myfile.cpp
e (Notice no .h file is listed on the above line)

Data Abstraction

Data Abstraction is one of the most powerful
orogramming paradigms

t allows us to create our own user defined
data types (using the class construct) and

e then define variables (i.e., objects) of those new
data types.

Data Abstraction

* With data abstraction we think about what
operations can be performed on a particular
type of data and not how it does it

* Here we are one step closer to object oriented
programming

Data Abstraction

e Data abstraction is used as a tool to increase
the modularity of a program

* [tis used to build walls between a program
and its data structures

e what is a data structure?
e talk about some examples of data structures

 We use it to build new abstract data types

Data Abstraction

* An abstract data type (ADT) is a data type that
we create

e consists of data and operations that can be
performed on that data

* Think about a char type

e it consists of 1 byte of memory and operations
such as assignment, input, output, arithmetic
operations can be performed on the data

Data Abstraction

* An abstract data type is any type you want to add to
the language over and above the fundamental types

* For example, you might want to add a new type
called: list
e which maintains a list of data
e the data structure might be an array of structures

e operations might be to add to, remove, display all, display
some items in the list

Data Abstraction

* Once defined, we can create lists without
worrying about how the data is stored

 We “hide” the data structure used for the data
within the data type -- so it is transparent to
the program using the data type

* We call the program using this new data type:
the client program (or client)

Data Abstraction

* Once we have defined what data and operations
make sense for a new data type, we can define them
using the class construct in C++

* Once you have defined a class, you can create as
many instances of that class as you want

e Each “instance” of the class is considered to be an
“object” (variable)

Data Abstraction

* Think of a class as similar to a data type
e and an object as a variable

* And, just as we can have zero or more
variables of any data type...

e we can have zero or more objects of a class!

 Then, we can perform operations on an object
in the same way that we can access members
of a struct...

Procedural versus Object-Oriented
Programming

* Procedural programming focuses on the
process/actions that occur in a program. The
program starts at the beginning, does
something, and ends.

* Object-Oriented programming is based on the
data and the functions that operate on it.
Objects are instances of abstract data types
that represent the data and its functions

Limitations of Procedural
Programming

* If the data structures change, many
functions must also be changed

* Programs that are based on complex
function hierarchies are:

— difficult to understand and maintain
— difficult to modify and extend
— easy to break

What is OOPs?

Object-oriented programming — As the name suggests uses
objects in programming. Object-oriented programming aims to
implement real-world entities like inheritance, hiding,
polymorphism, etc in programming. The main aim of OOP is to
bind together the data and the functions that operate on them so
that no other part of the code can access this data except that

function.

Object-Oriented Programming
Terminology

e class: like a struct (allows bundling of
related variables), but variables and functions

in the class can have different properties than
Ina struct

* object: aninstance of a class, in the same

way that a variable can be an instance of a
struct

Classes and Objects

* A Class is like a blueprint and objects are like
houses built from the blueprint

Blueprint that describes a house.

Instances of the house described by the blueprint.

H [H [H -

Object-Oriented Programming
Terminology

e attributes: members of a class

e methods or behaviors: member functions of a
class

More Object Terms

e data hiding: restricting access to certain
members of an object

* public interface: members of an object that
are available outside of the object. This allows
the object to provide access to some data and
functions without sharing its internal details
and design, and provides some protection
from data corruption

Creating a Class

* Objects are created froma class

* Format:

class ClassName

{

declaration;

declaration;

by

Classic Class Example

class Rectangle
1
private:
doulble width:
double length;
public:
vold setWidth(double):
vold setlength(double);
double getWidth({) const;
double getlLength() const;
double getArea() const;

Access Specifiers

Used to control access to members of the
class

public: can be accessed by functions
outside of the class

private: can only be called by or accessed
by functions that are members of the class

In the example on the next slide, note that the
functions are prototypes only (so far)

Class Example

class Rectangle
1
private:
double width:
double length;
public:
vold setWidth(double);
vold setlLength(double);
double getWidth() const;
double getlLengthi{) const;
double getArea() const;

Access Specifiers

class Rectangle Private Members
| /
private:
double width: Public Members
double length; //
public:

volid setWidth(double);

vold setLength{double);
double getWidth() const;
double getLength() const;

double getArea() const;

Access Specifiers (continued)

* Can be listed in any order in a class
e Can appear multiple times in a class

* |f not specified, the defaultis private

Using const With Member Functions

e const appearing after the parentheses in a
member function declaration specifies that

the function will not change any data in the

calling object.

double getWidth() const;
double getLength() const;
double getArea() const;

Defining a Member Function

nen defining a member function:
Put prototype In class declaration

Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth (double w)
{

width = w;
}

Global Functions

* Functions that are not part of a class, that is,
do not have the Class: :name notation,

are global. This is what we have done up to
this point.

Accessors and Mutators

 Mutator: a member function that stores a
value in a private member variable, or
changes its value in some way

e Accessor: function that retrieves a value from
a private member variable. Accessors do not

change an object's data, so they should be
marked const.

Defining an Instance of a Class

An object is an instance of a class

Defined like structure variables:
Rectangle r;

Access members using dot operator:
r.setWidth(5.2);
cout << r.getWidth() ;

Compiler error if you attempt to access a
private member using dot operator

Derived Attributes

e Some data must be stored as an attribute.

e Other data should be computed. If we stored
“area” as a field, its value would have to

change whenever we changed length or
width.

* In aclass about a “person,” store birth date
and compute age

Pointers to Objects

* Can define a pointer to an object:
Rectangle *rPtr;

e Can access public members via pointer:
rPtr = &otherRectangle;
rPtr->setLength (12.5);
cout << rPtr->getlLength () << endl;

Dynamically Allocating Objects

Rectangle *rl;
r1l = new Rectangle();

* This allocates a rectangle and returns a
pointer to it. Then:

rl->setWidth(12.4) ;

Private Members

* Making data members private provides
data protection

* Data can be accessed only through public
functions

e Public functions define the class’s public
interface

Private Members

Code outside the class must use the class's
public member functions to interact with the

object.
Rectangle Class

width length
A)
. setWidth—I \
Code -—+t— getWidth
Outside the
Class -~ setLength
- getLength =

Separating Specification from
Implementation

 Place class declaration in a header file that serves
as the class specification file. Name the file

ClassName.h, for example, Rectangle.h

e Place member function definitions in
ClassName.cpp, for example,

Rectangle.cpp
class specification fi

* Programs that uset
class specification fi

File should #include the
e

ne class must #include the

e, and be compiled and

linked with the member function definitions

Inline Member Functions

e Member functions can be defined
— inline: in class declaration
— after the class declaration

* Inline appropriate for short function bodies:

int getWidth () const
{ return width; }

Tradeoffs — Inline vs. Regular Member
Functions

* Regular functions — when called, compiler
stores return address of call, allocates
memory for local variables, etc.

* Code for an inline function is copied into
program in place of call — larger executable
program, but no function call overhead, hence
faster execution

Very brief history of C++

1962
. . 1969-1973 2014
Simula | was invented tﬂjl' The C |ang|_|age was invented Minar LlpdatEZ C++14 releazed.

Kristen Mygaard and Ole-Johan , L oA
Dahl as a simulation language by Dennis Ritchie at Bell Labs

| x T
i l 2011

/ \ Major update; C++11 standard
1967 1972 released
Simula 67 developed as the first D. Ritchie and Ken Thompson
object-oriented language re-write the Unix 05 in C T
: ’ 1989

C++ 2.0 standard released.

- ;

1979 1983

Bjarne Stroustrop began ——» "Cwith Classes” renamedto —» *Ist[:ummer:igiggﬁ T
developing "C with Classes” CH++ '
Ping Cfront, released by AT&T

C++

Object-oriented pr

* Object-oriented
programming (OOP) seeks

to define a program in terms of enﬁssiﬂspectrﬁm in

the things in the problem e ~

(files, molecules, buildings, 4 Obj“tz(jf;sf)”ces of

cars, people, etc.), what they GasMolecule chd

need, and what they can do. gastotecule co2 ¢ pseudoncr

spectrum =
ch4.IR(1000,3500)

N Y
2 . common._name

Object-oriented programming

OOP defines classes to
represent these things.

Classes can contain data and
methods (internal functions).

Classes control access to
internal data and methods. A
public interface is used by
external code when using the
class.

This is a highly effective way of
modeling real world problems
inside of a computer program.

private data and methods

Characteristics of C++

C++is...
— Compiled.

* A separate program, the compiler, is used to turn C++ source code into a form
directly executed by the CPU.

— Strongly typed and unsafe

* Conversions between variable types must be made by the programmer (strong
typing) but can be circumvented when needed (unsafe)

— C compatible

* call Clibraries directly and C code is nearly 100% valid C++ code.
— Capable of very high performance

* The programmer has a very large amount of control over the program execution
— Object oriented

* With support for many programming styles (procedural, functional, etc.)

No automatic memory management
— The programmer is in control of memory usage

When to choose C++

Despite its many competitors C++
has remained popular for ~30
years and will continue to be so in
the foreseeable future.

Why?
— Complex problems and programs
can be effectively implemented
— OOP works in the real world!

— No other language quite matches
C++’s combination of
performance, expressiveness,
and ability to handle complex
programs.

Choose C++ when:
— Program performance matters

* Dealing with large amounts of
data, multiple CPUs, complex
algorithms, etc.

Programmer productivity is less
important

* |tis faster to produce working
code in Python, R, Matlab or
other scripting languages!

The programming language itself
can help organize your code

* Ex. In C++ your objects can closely
model elements of your problem

Access to libraries

* Ex. Nvidia’s CUDA Thrust library

for GPUs

Your group uses it already!

Behind the Scenes: The Compilation

Process

header files
instream.h
my_headerh

* Expanded source code file
* not normally visible
* g++-Eto see output

m

C++ Preprocessor —
—>

main.cp

Object code file
Mmain.o

C++ library files

system library files assembler

1—

—>

C++ compiler

* Aszembler code file
* not normally visible
* g++-5t0 see output

Li

—_—

Executahle

linker

main

g++ -0 main main.cpp

Hello, World! explained

main.cpp X

1 f#include <iostream>
2
3 nsing namespace std: The main routine — the start of every C++
4 == program! It returns an integer value to the
E Int main() -« operating system and (in this case) takes no
T _ arguments: main()
7 cont << "Hello world!" << endl;
g return 0,
9

10

The return statement returns an integer
value to the operating system after
completion. 0 means “no error”. C++
programs must return an integer value.

Hello, World! explained

loads a header file containing function and
class definitions

Loads a namespace called std. Namespaces
are used to separate sections of code for

programmer convenience. To save typing
we’ll always use this line in this tutorial.

main.cpp X /
1 f#include <iostream>
2
3 nsing namespace =td;
4
5 int main()
6 .
i

[
[N = R =

cont << "Hello world!"™ <<
retorn 0;

endl;

cout is the object that writes to the stdout device, i.e.
the console window.

It is part of the C++ standard library.

Without the “using namespace std;” line this would
have been called as std::cout. It is defined in the
iostream header file.

<< is the C++ insertion operator. It is used to pass
characters from the right to the object on the left.
end! is the C++ newline character.

H e a d e r Fciflgéage headers aren’t

C++ (along with C) uses header
files as to hold definitions for the
compiler to use while compiling.

A source file (file.cpp) contains
the code that is compiled into an
object file (file.o).

The header (file.h) is used to tell
the compiler what to expect
when it assembles the program
in the linking stage from the
object files.

Source files and header files can
refer to any number of other
header files.

referred to with the .h suffix.
<iostream> provides definitions
for /0 functions, including the

cout Tnction.

#include <iostream>

using namespace std;

int main ()

{

string hello = "Hello";
string world = "world!";
string msg = hello + " "

world ;

cout << msg << endl;
msg[0] = 'h';

cout << msg << endl;
return O;

Slight change

Let’s put the message into some
variables of type string and print
some numbers.

Things to note:

Strings can be concatenated with a +
operator.

No messing with null terminators or
strcat() asin C

Some string notes:

— Access a string character by brackets
or function:

msg[0] = “H” or msg.at(0) 2>

IIH”

C++ strings are mutable — they

can be changed in place.

Press F9 to recompile & run.

N\

#include <iostream>
using namespace std;

int main ()

{
string hello = "Hello";
\\\ string world = "world!";
string msg = hello + " " +
world ;
cout << msg << endl;
msg[0] = 'h';
cout << msg << endl;
return O;
}

A first C++ class: string

string is not a basic type (more
on those later), it is a class.

string hello creates an
instance of a string called
“hello”.

hello isan object.

Remember that a class defines
some data and a set of
functions (methods) that
operate on that data.

Let’s use C::B to see what
some of these methods are....

#include <iostream>
using namespace std;

int main ()
{
string hello = "Hello";
string world = "world!";
string msg = hello + " "
world ;
cout << msg << endl;
msg[0] = 'h';
cout << msg << endl;
return O;

4

A first C++ class: string

Update the code as you see
here.

After the last character is
entered C::B will display some
info about the string class.

If you click or type something
else just delete and re-type the
last character.

Ctrl-space will force the list to
appear.

#include <iostream>
using namespace std;

int main ()

{

string hello = "Hello";
string world = "world!";
string msg = hello + " " +

world ;
cout << msg << endl;

msg[0] = "h';
cout << msg << endl;
msqg

return O;

A first C++ class: string

*main.cpp X

1 #include <iostream>

3 n=sing namespace std; ShOWS thls

: function

£ int main()

= (main) and

7 string hello = "Hella": L|St Of the type Of

i3 string world = "world!"; .

9 string msg = hello + " " + world ; Strlng msg

10 cou‘?-i::{: msg << endl; L|St Of m thOdS .

11 msg[0] = ‘0’ (Strlng)

12 cout << msg << endl; Other

13

14 nsg string

15 B hello: string y 4 H A mai"\

16 —

i; | | ® world: string m.msg
o) (__gthrw pthread cond signal, pthread cond signal, pthread cond signal) (): (_ gthrw pthread cond init, pthread cond... (variable)
o) (__gthrw pthread key create, pthread key create, pthread key create)(): (_ gthrw pthread cond timedwait, pthread co...
(o) (__gthrw pthread mutex init, pthread mutex init, pthread mutex init)(): (_ gthrw pthread mutex timedlock, pthread m... Open declaration
{m) (__gthrw pthread mutex lock, pthread mutex lock, pthread mutex lock) (): (_ gthrw pthread cancel, pthread cancel, pt... Close Top
(o) (__gthrw pthread self, pthread self, pthread self)(): (_ gthrw pthread join, pthread join, pthread join) (_ gthrw pt...
(o) (__gthrw pthread setspecific, pthread setspecific, pthread setspecific)(): (__gthrw pthread once, pthread once, pth...
(@ * pthread key dest(): wvoid
{®) abort (): void
(8) address(): const pointer v

* Next: let’s find the size() method without scrolling for
it.

A first C++ class: string

*mamcpp X besicsrngh X

asing namespace std: e Start typing “msg.size()” until it appears in the list. Onceit’s

tat zaia highlighted (or you scroll to it) press the Tab key to auto-enter it.
* On the right you can click “Open declaration” to see how the C++

s e compiler defines size(). This will open basic_string.h, a built-in file.
msg.3i3
n: '"-::‘:I *| std: cxxti-basic string

:0 sz.;zfa.:;m:_: qm’\: size trpe size() const

QOpen deciaraiion
Open implemeniabon

Close To

#H ¥ B ¥ B N BN
th tn tn tn tn o tn tn

6} size(): siz= type

A first C++ class: string

Tweak the code to print the
number of characters in the
string, build, and run it.

From the point of view of
main(), the msg object has
hidden away its means of
tracking and retrieving the
number of characters
stored.

Note: while the string class
has a huge number of
methods your typical C++
class has far fewer!

#include <iostream>
using namespace std;
int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " +
world ;

cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << mag.size () << endl
return O;

}

= Note that cout prints
integers without any
modification!

Break your code.

Remove a semi-colon. Re-compile. What messages do you get from the compiler and C::B?
Fix that and break something else. Capitalize string = String

C++ can have elaborate error messages when compiling. Experience is the only way to learn
to interpret them!

Fix your code so it still compiles and then we’ll move on...

Basic Syntax

C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and
we’ll cover more as we go along.

Curly braces are used to denote a code block (like the main() function):
{ .. some code .. }

Statements end with a semicolon:

int a ;

Ja =14+ 3 ol .
Comments are marked for a sin::ie nne wiwn al // or for multilines with a

pair of /* and */ : '

// this 1s a

comment.
/* everything in
here
Variables can be declar: _ 15 2 nacode ploek
comment */ oid
my function() {
int a ;
a=1l ;
int b;

Functions are sections of code that are called from other code. Functions always
have a return argument type, a function name, and then a list of arguments

separated by commas:

int add(int x, int vy)
int z = x + vy ;
return z ; doefni-

/

/f

// No arguments? Still need ():
void my function() {

/* do something...

but a void value means

U111 a vailuc,

‘the

return statement can be

Variables are declared with a type anc

skipped.*/

} name:

// Specify the type
int x = 100;

float y;
vector<string> vec

inferred

auto z = x;

// Sometimes types can be

4

* A sampling of arithmetic operators:

— Arithmetic: + = * / % ++ -
— Logical: && (AND) | |(0Rr) l(NOT)
— Comparison: == > < >= <= |I=

 Sometimes these can have special meanings
beyond arithmetic, for example the “+” is used
to concatenate strings.

 What happens when a syntax error is made?

— The compiler will complain and refuse to compile
the file.

— The error message usually directs you to the error
but sometimes the error occurs before the compiler
discovers syntax errors so you hunt a little bit.

Built-in (aka primitive or intrinsic)

Types

* “primitive” or “intrinsic” means these types are not objects

* Here are the most commonly used types.

* Note: The exact bit ranges here are platform and compiler dependent!

— Typical usage with PCs, Macs, Linux, etc. use these values

— Variations from this table are found in specialized applications like embedded system

processors.
Name Name Value Name Value
char unsigned char | 8-bit integer float 32-bit floating
short unsigned 16-bit integer point
short double 64-bit floating
int unsigned int | 32-bit integer point
long unsigned long | 64-bit integer | | 1oN81ong 128-bit integer
bool e @ e long double 12§-bit floating
http://www.cplusplus.com/dac/tut point

orial/variables/

Need to be sure of integer sizes?

In the same spirit as using integer(kind=8) type notation in Fortran, there are type
definitions that exactly specify exactly the bits used. These were added in C++11.

These can be useful if you are planning to port code across CPU architectures (ex.
Intel 64-bit CPUs to a 32-bit ARM on an embedded board) or when doing
particular types of integer math.

For a full list and description see: http://www.cplusplus.com/reference/cstdint/

H#Hinclude <cstdint>

Name Name Value

int8 _t uint8_t 8-bit integer
intle_t uintl6_t 16-bit integer
int32_t uint32_t 32-bit integer
int64_t uinté4 _t 64-bit integer

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

The object hello

occupies some
string hello = "HeT1o" Lcomputer

memory.

The asterisk indicates that hello_ptr
string *hello ptr = allo’

__ is a pointer to a string. hello_ptr
string shello ref = hello; variable is assigned the memory
- address of object hello which is
accessed with the “&” syntax.
The & here indicates that hello_ref is a
reference to a string. The hello_ref variable
is assigned the memory address of object
hello automatically.

e Variable and object values are stored in particular locations in the computer’s
memory.

* Reference and pointer variables store the memory location of other variables.

* Pointers are found in C. References are a C++ variation that makes pointers easier
and safer to use.

* More on this topic later in the tutorial.

Type Casting

C++ is strongly typed. It will auto-convert a variable of one type to another in a
limited fashion: if it will not change the value.

Conversions that don’t ch

integer = floating point of at

short
int vy
OK

short

X

Z

X

1 ;

.
14

Y 7

//

//

ange no ! e: increasing precision (float =2 double) or

east the same precision.

C++ allows for C-style type casting with the syntax: (new type) expression

double x
int y
float =z

But since we’re doing C++

/;/);

-wetHookatthe4-waysofd

1.0 ;

(int) x ;
(float)

(x

oing this in C++ next...

Type Casting

static cast<new type>(expressio]
— This is exactly equivalent to the C style cast.
— This identifies a cast at compile time.
— This will allow casts that reduce precision (ex. double = float)
— ~99% of all your casts in C++ will be of this type.

double d = 1234.56 ;
float f =
static cast<float>(d)
// same as

float g = (float) d ;

dynamic cast<new type>(expression)
— Special version where type casting is performed at runtime,

only works on reference or pointer type variables.

rarely done by the programmer.

— Usually handled automatically by the compiler where needed,

Type Casting cont’d

const cast<new type>(expression)
— Variables labeled as const can’t have their value changed.

— const_cast lets the programmer remove or add const to
reference or pointer type variables.

— If you need to do this, you probably want to re-think your
code.

reinterpret cast<new type>(expression)

— Takes the bits in the expression and re-uses them
unconverted as a new type. Also only works on reference or
pointer type variables.

— Sometimes useful when reading in binary files and
extracting parameters.

“unsafe”: the
compiler will
not protect
you here!

The
programmer
must make
sure
everything is
correct!

Funetions:

Open the project “FunctionExample”
in C::B files
- Compile and run it!

Open main.cpp
4 function calls are listed.

The 15t and 2" functions are identical
in their behavior.

— The values of L and W are sent to the
function, multiplied, and the product is
returned.

RectangleArea2 uses const arguments

— The compiler will not let you modify their values
in the function.

— Tryit! Uncommentthe line and see what
happens when you recompile.

The 3" and 4t versions pass the
arguments by reference with an added
&

float. f/OGt.

The function arguments L
and W are sent as type

/

float RectangleAreal (float L, float W)
return L*W ;

} — Product is computed

float RectangleArea? (const float L, const float W)

{

return L*W ;

float RectangleArea3 (const floaté& 1, const floatsé

W) |

return L*W ;

void RectangleAread (const float& L, const float& W,

floaté& area) {
area= L*W ;

{

N

"

Using the C::B Debugger

To show how this works we will use the C::B interactive debugger to step through the
program line-by-line to follow the function calls.

Make sure you are running in Debug mode. This turns off compiler optimizations and has
the compiler include information in the compiled code for effective debugging.

Fortran wxSmith Tools an::c:Is— Plugins DoxyBlocks Settings Help
@k § S O Debug v|i W Ga bl £ G | E <global>
IR z v @ Ldidasih O

le.h ¥ maincpp X srcrectangle.cpp X

Flnclude <103Tream

naina nameenans et

Add a Break

&
4
5
6
* Breakpoints tell the debugger to ‘o
halt at a particular line so that the
state of the program can be
inspected.
* In main.cpp, double click to the =
left of the lines in the functions to v
. . 18
set a pair of breakpoints. A red 19
. 20
dot will appear. 21
* Click the red qrrow to start the 50
SO DT IR D ¥ T ;:
Fortran waSmith Tools Toels+ Pluging DogpBlocks Seftings Help 26
@k % S 0 Debug Il - Y= Ga b2 & 6o ‘ E <global> 27
IRy oo Lk ih|O]EAD 2
le.h ¥ | maincpp X | srcirectangle.cpp X 300
e eimmmomon 31
¥incliude <103Creams 32
33

nainT nameanans <td-

point

using namespace std;

float Rectanglelreal (float L, float W)

T return L*W ;

float Rectanglelrea? (const float L, const float W)

T return L*W ;

float Rectanglekreal(const float: L, const float:z W)

T return L*W ;

void Rectanglelread (const floati L, const float:i W, float: a:

T area= L*W ;

float Rectanglelreal (float L, float W)

0 T| return L*W ;

W el -] onoen

10

* The debugger will
pause In the fIrSt E float RectangleArea? const float L t float W)

function at the g’ T
16 @ return LFW :
breakpoint. |

[
-1

18

15

20

21 float Rectanglelreal|const float: L, const float: W)
22 {

230 T return LW ;

24 }

25

26

27

28 void Rectanglelread (const float: L, const float:i W, float:z area)
28 {

300 T area= L*W :

31 }

Lad
[%)

u
L

* Click the Debug menu, go to
Debugging Windows, and choose
Call Stack. Drag it to the right, then
go back and choose Watches. Drag
it to the right. Do the same for the
Breakpoints option. Your screen
will look something like this now...

- ~ _ a2V .

Ty ramae——

B % & Debug b"%E Ga %: {s"‘: Go &4’: a ‘ E ﬂ

Viztches fnew) X

E Furcion arquents

Watches shows /@

the variables in
use and their
values

Cd sk X

Nr Address Function Fle

NNy e

Place the cursor in the
function, click to run to T
the cursor

Run the next line

Stepintoa
function call

Step out of a
function to the
calling function.

|

Step by CPU

instruction. Less
useful, generally.

Call Stack shows . B
the functions

being called,

newest on top.

Breakpoints lists redmonts X

the breakpoints \ D e

@ Code C'tempCpp tutoniah TUTORIAL\ CodzBlocks Projects)\Pzrt 7\ Shapesisrcirectar
’
you’ve created.

@ Code C\temp)Cpp tutoria TUTCREAL! CodeBlocks Projects! Part 21 Shapesisrc' rectar

Doglieds X' S)

4
(]
(<]

UNIT-2
C++ Classes and Data Abstraction

Classes

Object-oriented design (OOD): a problem

solving methodology
Objects: components of a solution

Class: a collection of a fixed number of
components

Member: a component of a class

Classes (cont’d.)

* Class definition:
— Defines a data type; no memory is allocated
— Don’t forget the semicolon after the closing brace

* Syntax:

class classIdentifier

{
classMembersList

}:

Classes (cont’d.)

* Class member can be a variable or a function
e If amember ofa class isavariable

— It is declared like any other variable
— You cannot initialize a variable when you declare it
* I[famember ofaclassisafunction

— Function prototype is listed

— Function members can (directly) access any
member of the class

Classes (cont’d.)

* Three categories of class members:
—private (default)
* Member cannot be accessed outside the class
—public
* Member is accessible outside the class

—protected

Variable (Object) Declaration

* Once defined, you can declare variables of
that class type

clockType myClock;
e A class variableis called a class object or

class instance

myClock yourClodk

FIGURE 10-2 Objects myClock and yourClo

Accessing Class Members

* Once an object is declared, it can access the
public members of the class

* Syntax:

classObjectName.memberName

— The dot (.) is the member access operator

* |f an object is declared in the definition of a
member function of the class, it can access
the public and private members

Built-in Operations on Classes

* Most of C++’s built-in operations do not apply to
classes

— Arithmetic operators cannot be used on class objects
unless the operators are overloaded

— Cannot use relational operators to compare two class
objects for equality

* Built-in operations that are valid for class objects:
— Member access (.)
— Assignment (=)

Assignment Operator and Classes

myClock yourClock myClock yourClock

(@) myClock and yourClock before (b) myClock and yourClock after
executing myClock =yourClock; executing myClock = yourClock;
FIGURE 10-3 myClock and yourClock before and after executing the statement myClock =

yourClock;

Class Scope

* An object can be automatic or static

— Automatic: created when the declaration is
reached and destroyed when the surrounding
block is exited

— Static: created when the declaration is reached
and destroyed when the program terminates

* Object has the same scope as other variables

Class Scope (cont’d.)

e A member of the class islocal to the
class

e Can access a class member outside the

class by using the class object name and
the member access operator (.)

Functions and Classes

* Objects can be passed as parameters to
functions and returned as function values

e As parameters to functions
— Objects can be passed by value or by reference

* If an object is passed by value

— Contents of data members of the actual
parameter are copied into the corresponding data
members of the formal parameter

Reference Parameters and Class
Objects (Variables)

* Passing by value might require a large amount
of storage space and a considerable amount of
computer time to copy the value of the actual
parameter into the formal parameter

* |f a variable is passed by reference

— The formal parameter receives only the address of
the actual parameter

Reference Parameters and Class
Objects (Variables) (cont’d.)

* Pass by reference is an efficient way to pass a
variable as a parameter
— Problem: when passing by reference, the actual

parameter changes when formal parameter
changes

— Solution: use const in the formal parameter
declaration

Implementation of Member Functions

e Must write the code for functions defined as
function prototypes

* Prototypes are left in the class to keep the
class smaller and to hide the implementation

* To access identifiers local to the class, use the
scope resolution operator ::

Implementation of Member Functions
(cont’d.)

myClock myClock

(a) myClock before executing (b) myClock after executing
myClock.setTime (3, 48, 52); myClock.setTime (3, 48, 52);

FIGURE 10-4 myClock before and after executingthe statement myClock.setTime (3, 48, 52);

Implementation of Member Functions
(cont’d.)

myClock vourClock

FIGURE 10-5 Objects myClock and yourClock

myClock yourClock

equalTime

FIGURE 10-8 Object myClock and parameter ctherClock

Implementation of Member Functions
(cont’d.)

* Oncea class is properly defined and
implemented, it can be used in a program

— A program that uses/manipulates objects of a
class is called a client of that class

* When you declare objects of the class
clockType, each object has its own copy of
the member variables (hr, min, and sec)

* Called instance variables of the class
— Every object has its own instance of the data

Accessor and Mutator Functions

e Accessor function: member function that only
accesses the value(s) of member variable(s)

 Mutator function: member function that
modifies the value(s) of member variable(s)

e Constant function:

— Member function that cannot modify member
variables

— Use const in function heading

Order of publicand private

Members of a Class
 C++ has no fixed order in which to declare
public and private members

* By default, all members of a class are
private

* Use the member access specifier public to
make a member available for public access

Constructors

e Use constructors to guarantee that member
variables of a class are initialized
* Two types of constructors:

— With parameters
— Without parameters (default constructor)

— Name of a constructor = name of the class
— A constructor has no type

Constructors (cont’d.)

A class can have more than one constructor
— Each must have a different formal parameter list

Constructors execute automatically when a
class object enters its scope

They cannot be called like other functions

Which constructor executes depends on the
types of values passed to the class object
when the class object is declared

Invoking a Constructor

* A constructor is automatically executed when
a class variable is declared

* Because a class may have more than one
constructor, you can invoke a specific
constructor

Invoking the Default Constructor

* To invoke the default constructor:

className classObjectName;

* Example:

clockType yourClock;

Invoking a Constructor with
Parameters

* Syntax:

className classObjectName (argumentl, argument2, ...);

* Number and type of arguments should match
the formal parameters (in the order given) of
one of the constructors

— Otherwise, C++ uses type conversion and looks for
the best match

— Any ambiguity causes a compile-time error

Constructors and Default Parameters

* A constructor can have default parameters

— Rules for declaring formal parameters are the
same as for declaring default formal parameters in
a function

— Actual parameters are passed according to same
rules for functions

* Default constructor: a constructor with no
parameters or with all default parameters

Classes and Constructors: A Precaution

* |f a class has no constructor(s), C++ provides
the default constructor

— However, object declared is still uninitialized

 |f aclass includes constructor(s) with
parameter(s), but not the default constructor

— C++ does not provide the default constructor

Arrays of Class Objects (Variables) and
Constructors

* |f you declare an array of class objects, the
class should have the default constructor

clockType arrivalTimeEmp[100];

arrivalTimeEmp

arrivalTimeEmp [0] FESSS
arrivalTimeEmp [1] I

IFI

arrivalTimeEmp[49] g g
arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

1TimeEmp

FIGURE 10-8 Armay arrival

Destructors

Destructors are functions without any type
The name of a destructor is the character '~
followed by class name

— For example:
~clockType () ;

A class can have only one destructor
— The destructor has no parameters

Destructor automatically executes when the
class object goes out of scope

Data Abstract, Classes,
and Abstract Data Types

e Abstraction

— Separating design details from usage

— Separating the logical properties from the
implementation details

e Abstraction can also be applied to data

* Abstract data type (ADT): data type that
separates the logical properties from the
implementation details

A struct Versusa class

* By default, members of a struct are
public
—private specifier can beusedina struct to
make a member private

* By default, the members of a class are
private

e classesand structs have the same
capabilities

A struct Versusa class (cont’d.)

* In C++, the definition of a struct was
expanded to include member functions,
constructors, and destructors

* |f all member variables of a class are
public and there are no member functions

— Useastruct

Information Hiding

Information hiding: hiding the details of the
operations on the data

Interface (header) file: contains the specification
details

* File extensionis .h

Implementation file: contains the implementation
details

* File extensionis . cpp

In header file, include function prototypes and
comments that briefly describe the functions

— Specify preconditions and/or postconditions

Information Hiding (cont’d.)

* Implementation file must include header file
via 1nclude statement

* |[n include statement:

— User-defined header files are enclosed in double
quotes

— System-provided header files are enclosed
between angular brackets

Information Hiding (cont'd.)

* Precondition: A statement specifying the
condition(s) that must be true before the

function is called

e Postcondition: A statement specifying what is
true after the function call is completed

Executable Code

* To use an object in a program

— The program must be able to access the
implementation
e Visual C++, Visual Studio .NET, C++ Builder,
and CodeWarrior put the editor, compiler, and
linker into a package
— One command (build, rebuild, or make) compiles
program and links it with the other necessary files

— These systems also manage multiple file programs
in the form of a project

Static Members of a Class

* Use the keyword static to declare a
function or variable of aclass as static

* Apublic static function or member of a
class can be accessed using the class name
and the scope resolution operator

e static member variables of a class exist
even if no object of that class type exists

Static Members of a Class (cont’d.)

* Multiple objects of a class each have their
own copy of non-static member variables

* All objects of a class share any static member
of the class

Summary

* Class: collection of a fixed number of
components

* Members: components of a class

— Accessed by name
— Classified into one of three categories:

* private, protected,and public

* Class variables are called class objects or,
simply, objects

Summary (cont’d.)

* The only built-in operations on classes are
assignment and member selection

* Constructors guarantee that data members
are initialized when an object is declared
— Default constructor has no parameters

e Destructor automatically executes when a
class object goes out of scope

— A class can have only one destructor
— The destructor has no parameters

Summary (cont’d.)

Abstract data type (ADT): data type that
separates the logical properties from the
implementation details

Apublic static member, function or
data, of a class can be accessed using the class
name and the scope resolution operator

Static data members of a class exist even
when no object of the class type exists

Instance variables: non-static data members

UNIT-3
C++ Inheritance

C++ Inheritance

One of the most important concepts in object-oriented
programming is that of inheritance. Inheritance allows us to
define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an
opportunity to reuse the code functionality and fast
implementation time.

When creating a class, instead of writing completely new data
members and member functions, the programmer can
designate that the new class should inherit the members of an
existing class. This existing class is called the base class, and the
new class is referred to as the derived class.

C++ Inheritance

Inheritance is the process by which new classes called derived
classes are created from existing classes called base classes.

The derived classes have all the features of the base class and
the programmer can choose to add new features specific to the
newly created derived class.

C++ Inheritance

General Format for implementing the concept of Inheritance:

class derived _classname: access specifier baseclassname

For example, if the base class is MyClass and the derived class is
sample it is specified as:

class sample: public MyClass

The above makes sample have access to both public and protected
variables of base class MyClass

C++ Inheritance

public, private and protected access specifiers:

1 If a member or variables defined in a class is private, then they
are accessible by members of the same class only and cannot be
accessed from outside the class.

2 Public members and variables are accessible from outside the
class.

3 Protected access specifier is a stage between private and public.
If a member functions or variables defined in a class are
protected, then they cannot be accessed from outside the class
but can be accessed from the derived class.

C++ Inheritance

Inheritance Example:

class MyClass

{ public:
MyClass(void) { x=0; }
void f(int n1)
{ x=n1%*5;}
void output(void) { cout<<x; }
private:
int x;

C++ Inheritance

Inheritance Example:

class sample: public MyClass
{ public:
sample(void) { s1=0; }
void f1(int n1)
{s1=n1*10;}
void output(void)
{ MyClass::output(); cout <<sl;}
private:
Int s1;

5

C++ Inheritance

Inheritance Example:

int main(void)

{ sample s;
s.f(10);
s.output();
s.f1(20);
s.output();

}

The output of the above program is
50
200

Types of Inheritance

1. Single class Inheritance:

Single inheritance is the one where you have a single
base class and a single derived class.

Class Employee It is a Base class (super)

Class Manager it is a sub class (derived)

Types of Inheritance

2. Multilevel Inheritance:
In Multi level inheritance, a class inherits its properties
from another derived class

Class A it is a Base class (super) of B

Class B itis a sub class (derived) of A
and base class of class C

Class C derived class(sub) of class B

Types of Inheritance

3. Multiple Inheritances:

In Multiple inheritances, a derived class inherits from

multiple base classes. It has properties of both the base
classes.

Class A Class B Base class

Class C Derived class

Types of Inheritance

4. Hierarchical Inheritance:

In hierarchical Inheritance, it's like an inverted tree. So
multiple classes inherit from a single base class. It's

guite analogous to the File system in a unix based
system.

Class A

Class B Class D Class C

Types of Inheritance

5. Hybrid Inheritance:

v'In this type of inheritance, we can have mixture of
number of inheritances but this can generate an error
of using same name function from no of classes, which
will bother the compiler to how to use the functions.

v'Therefore, it will generate errors in the program. This
has known as ambiguity or duplicity.

v Ambiguity problem can be solved by using virtual
base classes

Types of Inheritance

5. Hybrid Inheritance:

Class A

Class D

C++ Inheritance

* |Inheritance = the “Is a” Relationship

* Apoodle isadog insect
 Acar is a vehicle members

* Atree is a plant

* Arectangleis a shape Grasshopper

Class

* A football player is a an athlete members

e Base Class is the General Class
* Derived Class is the Specialized Class

C++ Inheritance

(Trnangle) (Quadrilateral)

¥

f
< Right Triangle) (Rectangle)

{ Square)

_ gar
float speed:

float acceleration;
float horsePower;

float weight;

/
/

»

N\

X

drag_racer

stock _car

bool chuteDeployed:
float chuteDrag:

{loat frontMomentCenter:

fioat reartMomentCenter;

DrawableObject

Rectangle

float springRate;
108
Yege class
- v
{. - P
istream ostream
b / N
ifstream 1osfream ofstream

fstream

C++ Inheritance

* Syntax

class B {

/Access Specification: Public\
- Public members of Base are public
members of Derived
- Private members of Base remain

private members, but are inherited by the
Derived class.

i.e. “They are invisible to the

\ Derived class” /

int I; B
publl;: | Class //Base
void Set I (1nt X) {I=X;} members
int Get I() {return I;}
y — Base Class
! Access
Specification D
Class //Derived
. : . members
class D { public B){ int main() {
int J; D ob;
public: ob.Set J(10);
\d Set J(int X) ob.Set I(4);
Vol éjf; ;: // ob.I = 8; Compile error!
. tJ = %7} cout << ob.Mul () << endl;
int Mul ()

{return J * Get _I();}
// 3 * I 2> Compile error!

b

return 0;
} // end main

C++ Inheritance

* A base class in not exclusively “owned” by a
derived class. A base class can be inherited by
any number of different classes.

 There may be times when you want to keep a
member of a base class private but still permit
a derived class access to it.
SOLUTION: Designate the data as protected.

C++ Inheritance

Protected Data Inherited as Public

class Base {
protected:
InE a, B
public:
yoid Sekal (int m, int m)
{ a=n; b=m;}

| ¥

e

Private members of the base class are always
private to the derived class regardless of the
access specifier.

e

class Derived: public Base {
intkE @
public:
void Setc(int x) { ¢ = x;}
void Showabc () {

int main () {
Derived ob;

ob.Setab (1, 2);
ob.Setc (3) ;
ob.Showabc () ;
//ob.a = 5 NO! NO!

return 0;

} // end main

GOl €€ aa €€ W W o Iy ¢ W W @ @ €& andl;

C++ Inheritance

* Public Access Specifier

— Private members of Base remain private members and are
inaccessible to the derived class.

— Public members of Base are public members of Derived

BUT

— Protected members of a base class are accessible to
members of any class derived from that base.

Protected members, like private members, are not
accessible outside the base or derived classes.

/\/

Private members of the base class are always private to
the derived class regardless of the access specifier

/\/

C++ Inheritance

* But when a base class is inherited as protected,
public and protected members of the base class become
protected members of the derived class.

class Base {
protected:
int a, b;
public:
void Setab (int n, int m)
{ a=n;, b=m}

b

class Derived: protected Base {
int c;
public:
void Setc(int x) { c = x;}
void Showabc () {

}
b

int main () {
Derived ob;

//ob.Setab(1,2); ERROR
//ob.a = 5; NO! NO!

ob.Setc (3) ;
ob.Showabc () ;

return 0;
} // end main

cout << a << N V" << b << M M K ¢ <KL endl;

Private members of the base class are always

private to the derived class regardless of the C+ + I n h e r i ta n C e

access specifier

Protected Access Specifier

— Private members of the base class are inaccessible
to the derived class.

— Public members of the base class become
protected members of the derived class.

— Protected members of the base class become
protected members of the derived class.

i.e. only the public members of the derived class are
accessible by the user application.

C++ Inheritance

* Constructors & Destructors

— When a base class and a derived class both have
constructor and destructor functions

 Constructor functions are executed in order of
derivation — base class before derived class.

* Destructor functions are executed in reverse order —
the derived class’s destructor is executed before the
base class’s destructor.

— A derived class does not inherit the constructors
of its base class.

C++ Inheritance

class Base {

public:
Base () { cout <<
~Base () {cout <<
b
class Derived public
public:
Derived () { cout

~Derived () { cout

b

“Constructor Base Class\n”;}
“Destructing Base Class\n”;}

Base {

<< Constructor Derived Class\n”;}
<< Destructing Derived Class\n”;}

int main() {
Derived ob
return o;

-—-—— OUTPUT

; Constructor

Constructor
Destructing
Destructing

Base Class
Derived Class
Derived Class
Base Class

C++ Inheritance

* Passing an argument to a derived class’s constructor

Class Base {
public:
Base ()
~Base ()
}:
Class Derived
int J;
public:
Derived

{cout << “Constructor Base Class\n”;}
{cout << “D cting Base Class\n”;}

: public Base {

(int X) {

cout << Constructor Derived Class\n”;

J =
}

~Derived () { cout << Destructing Derived Class\n”;}
volid Showd ()

X;

{ Cout << “J: AN << J << \\\n//; }

int main () { A

Derived Ob (10) ;
Ob.ShowdJ () ;
return 0;

} // end main

C++ Inheritance

* Arguments to both Derived and Base Constructors

Class Base {
int I;
public:

Base (int Y) {
cout << “Constructor Base Class\n”;
I =7Y;}

voilid ShowI () { cout << \“I: ™ << I << endl;

I
Class Derived : public Base {

int J;
public:
Derived (int X) :(Base (X) {
cout << Constructor Derived Class\n”;
J = X;

}

~Base () {cout << “Destructing Base Class\n”;

}
}

~Derived () { cout << Destructing Derived Class\n”;}
void ShowJ () { cout << << “J:” << J << ™\n”;

int main () {
Derived Ob (10) ;

Ob.ShowI () ;
Ob.Showd () ;
return 0;

} // end main

}

C++ Inheritance

* Different arguments to the Base — All arguments to the Derived.

Class Base {
int I;
public:
Base (int Y) {
cout << “Constructor Base Class\n”;

I =7%Y;}
~Base () {cout << “Destructing Base Class\n”;}
void ShowI () { cout << “I: “ << I << endl; }

int main () {

}i
Derived 0b (5,8);

Class Derived : public Base {

int J;
public: Ob.ShowI () ;
Derived(int X, int Y) : Base (Y) { Ob . ShowJ () ;
cout << Constructor Derived Class\n”; return Of
J = X; } // end main

}

~Derived () { cout << Destructing Derived Class\n”;}
void ShowJ () { cout << << “J:” << J << ™\n”; }

C++ Inheritance

* OK-If Only Base has Argument

Class Base {
int I;
public:

Base (int Y¥Y) {
cout << “Constructor Base Class\n”;

I =1}
~Base () {cout << “Destructing Base Class\n”;}
void ShowI () { cout << \“I: “ << I << endl; }
}; int main () {
Class Derived : public Base ({ Derived Ob (10);
int J;
public: Ob.ShowI () ;
Derived (int X) : Base (X) ({ Ob.ShowJ () ;
cout << Constructor Derived Class\n”; return Of
J = 0; // X not used here } // end main

}

~Derived () { cout << Destructing Derived Class\n”;}
void ShowJ () { cout << << “J:” << J << ™\n”; }

C++ Inheritance

* Multiple Inheritance — Inheriting more than one base class

1. Derived class can be used as a base class for
another derived class
(multilevel class hierarchy)

2. A derived class can directly inherit more than
one base class. 2 or more base classes are
combined to help create the derived class

B1

C++ Inheritance

 Multiple Inheritance

D2
1. Multilevel Class Hierarchy

— Constructor functions of all classes are called in order of derivation: B1, D1, D2
— Destructor functions are called in reverse order

2. When a derived class directly inherits multiple base classes...

— Access_Specifiers { public, private, protected} can be different

— Constructors are executed in the order left to right, that the base classes are
specified.

— Destructors are executed in the opposite order.

Bl B2
class Derived Class Name: access Basel,
access Base’?,.. access BaseN
{
//.. body of class D

} end Derived Class Name

C++ Inheritance

 Derived class inherits a class derived from another class.

class Bl {

Y

int A; R1
public: . .
Bl(int 2) { A = Z;} lnthaéEE; ; o)
int GetA() { return A; } D1 et
};
.ShowAll () ;
class D1 : public B1 J{ Ob . Show 0
int B; D2
public: // GetA & GetB are still public here
. << . A << W wm
D1 (int ¥, int 2Z) : Bl (Z) { B = Y; } cout << Ob.GetA()
. << Ob.GetB() << endl;
vold GetB() { return B; }
}; .
Class D2 & public D1) { return Of
: } // end main
int C;
public:
D2 (int X, int ¥, int 2) D1 (Y, Z2)) { C = X; }
void ShowAll () {
cout << GetA() << ™ W << GetB() <<« " " K C < endl; }

Because bases are inherited as public,

D2 has access to public elements of both B1 and D1

C++ Inheritance

class Bl {

Derived Class Inherits Two Base Classes

int A;
public:
Bl (int 2Z)
int GetA()
I
class B2 {

{ A =2;} B1 B2

{ return A; }

int B; D int main() {
public: D Ob(5,7,9);
B2 (int ¥) { B = Y; }
void GetB () { return B; } Ob.ShowAll () ;
I
class D : public Bl, public B2 { return 0;
int C: } // end main
public:
D (int X, int ¥, int Z) : B1(Z), B2 (Y) { C = X; }

void ShowAll () {
cout << GetA() << % " K GetB() << %V Y K C << endl; }

|

C++ Inheritance

* Inheritance Multiple Base Classes
(constructor and destructor)
class Bl {
public: Bl B2
Bl () {cout << “Constructing Bl\n”; }
~B1l () {cout << “Destructing Bl\n”; }
I
class B2 { D
public:
B2 () {cout << “Constructing B2\n”; }
~B2 () {cout << “Destructing B2\n”; } int main () {
}; 3 1 II!I D ob;
class D : public Bl, public B2 { return 0;
public: } // end main
D() {cout << “Constructing D\n”; } e OUTPUT————
~D() {cout << “Destructing D\n”; }

Constructing Bl
Constructing B2
Constructing D
Destructing D
Destructing B2
Destructing Bl

C++ Inheritance

* Virtual Base Class

—Problem: - -
The Base B is 01 5
inherited twice T | 0
by D3. D3

— There is ambiguity!

— Solution: mechanism by which only one copy of B
will be included in D3.

C++ Inheritance

class B {

pub]._lC: int main () {
int I; D3 ob;
b
class D1 : wvirtual public B { ob.I = 15; //must be virtual
public: // else compile
. // time error
int J; ob.J = 21;
}i ob.K = 26;
class D2 : virtual public B {
public: cout << “Product: ™
. << ob.product () << endl;
int Kj return 0;
bi } // end main
class D3 : public D1, public D2 L
public:

int product {return I * J * K; 1}

Y

C++ Inheritance

A Derived class does not inherit the constructors
of its base class.

Good Advice: You can and should include a call to
one of the base class constructors when you
define a constructor for a derived class.

If you do not include a call to a base class
constructor, then the default (zero argument)
constructor of the base class is called
automatically.

If there is no default constructor for the base
class, an error occurs.

C++ Inheritance

* If the programmer does not define a copy
constructor in a derived class (or any class), C++
will auto-generate a copy constructor for you.
(Bit-wise copy)

* Overloaded assignment operators are not
inherited, but can be used.

e When the destructor for the derived class is
invoked, it auto-invokes the destructor of the
base class. No need to explicitly call the base
class destructor.

C++ Inheritance

* A derived class inherits all the member functions (and
member variables) that belong to the base class —
except for the constructor.

* |f a derived class requires a different implementation
for an inherited member function, the function may be
redefined in the derived class. (not the same
overloading)

— List its declaration in the definition of the derived class
(even though it is the same as the base class).

— Redefined function will have the same number and types
of parameters. l.e. signature is the same.

— Ok to use both (must use the base class qualifier to
distinguish between the 2)

C++ Inheritance

e Virtual Functions

— Background:

* A pointer declared as a pointer to a base class can also
be used to point to any class derived from that base.

* We can use a base pointer to point to a derived object,
but you can access only those members of the derived
object that were inherited from the base. The base
pointer has knowledge only of the base class; it knows
nothing about the members added by the derived class.

* A pointer of the derived type cannot (should not) be
used to access an object of the base class.

C++ Inheritance

e Virtual Functions-
Background

class Base {

int X;

public:
void SetX(int I) { X = I;}
int GetX() { return X:}

|

class Derived : public Base ({

int Y;

public:
void Set¥(int I) { Y = I;}
int GetY() { return Y;}

Y

int main () {
Base *ptr;
Base BaseOb;

Derived DerivedOb;

ptr = &BaseOb;

ptr2>SetX (15);

cout <<“Base X: “
<< ptr2>GetX ()

ptr = &DerivedOb;
ptr>SetX (29);

DerivedQOb.SetY (42) ;

<< endl;

// cannot use ptr

cout << “Derived Object X: ™

<< ptr2GetX()

<< endl;

cout << “Derived Object Y: ™
<< DerivedOb.GetY () << endl;

return 0;
} // end main

C++ Inheritance

e Virtual Functions

III

When the programmer codes “virtual” for a function, the programmer is
saying, “ 1 do not know how this function is implemented”.

Technique of waiting until runtime to determine the implementation of a
procedure is called late binding or dynamic binding.

A virtual function is a member function that is declared within a base class and
redefined by a derived class.

Demonstrates “One interface, multiple methods” philosophy that is
polymorphism.
“Run-time polymorphism”- when a virtual function is called through a pointer.

When a virtual function is redefined by a derived class,
the keyword virtual is not needed.

“A base pointer points to a derived object that contains a virtual function and
that virtual function is called through that pointer, C++ determines which
version of that function will be executed based upon the type of object being
pointed to by the pointer.” Schildt

C++ Inheritance

e Virtual Functions
— Exact same prototype (Override not Overload)
Signature + return type
— Can only be class members
— Destructors can be virtual; constructors cannot.

— Done at runtime!

— Late Binding: refers to events that must occur at run
time.

— Early Binding: refers to those events that can be
known at compile time.

C++ Inheritance

e Virtual Functions

class Base { Polymorphic class
pUb}lC: contains a virtual
int I;

base (int X) { I = X;} function.

virtual void func() {
cout << “Using Base version of func():
cout << I << endl;

}
i
class D1 ; public Base {
public:
D1 (int X) base (X) {}

void func() {
cout << Using D1’s version of func():
cout << I*I << endl;

}
i
class D2 public Base {
public:
D2 (int X) base (X) {}

void func() {
cout << Using D2’'s version of func():
cout << I+I << endl;

AL
14

W .
4

AL
’

int maint () {

Base *ptr;

Base BaseOb (10) ;
D1 D10b (10) ;
D2 D20b (10) ;

ptr = &BaseOb;
ptr=>func(); // use Base’s func/()

ptr = &D10b;

ptr>func(); // use D1’s func()

ptr = &D20b;

ptr>func ()’ // use D2’s func()

return 0;

}

--—-OUTPUT----
Using Base version of func(): 10
Using D1’s version of func(): 100
Using D2’'s version of func(): 20

If the derived class does not override a virtual function,
the function defined within its base class is used.

C++ Inheritance

int main () {

class Area
double diml, dim2;

public :
void SetArea (double dl, double d2) {
diml = dil;
dim2 = d2;

}

vold GetDim (double &dl, double &d2) {

dl = diml;
dz2 dim?2;

}
virtual double GetArea () {

cout << “DUMMY DUMMY OVERRIDE function”;

return 0.0;
}
class Rectangle
public :
double GetArea () {
double templ, temp?2
GetDim (templ, temp2);
return templ * temp2;

}

: public Area {

i
class Triangle
public :
double GetArea () {
double templ, temp?2
GetDim (templ, temp2);

: public Area {

return 0.5 templ * temp2;

Area *ptr;
Rectangle R;
Triangle T;

R.SetArea (3.3, 4.5);
T.SetArea (4.0, 5.0);

ptr = &R;
cout << “RECTANGLE_AREA: W
<< ptr2>GetArea() << endl;

ptr = &T;
cout << “TRIANGLE_AREA: W
<< ptr>GetArea() << endl;

return O;
} // end main

When there is no meaningful action for a
base class virtual function to perform, the
implication is that any derived class
MUST override this function. C++
supports pure virtual functions to do this.

Virtual double GetArea() = 0; // pure virtual

C++ Inheritance

e Virtual Functions

— When a class contains at least one virtual
function, it is referred to as an abstract class.

— An abstract class contains at least one function for
which no body exists,

so ah abstract class exists mainly to be inherited.
— Abstract classes do not stand alone.

— If Class B has a virtual function called f(), and D1
inherits B and D2 inherits D1, both D1 and D2 can
override f() relative to their respective classes.

UNIT-4
C++ Input/output

Introduction

 Many C++ |/O features are object-oriented
— Use references, function overloading and operator overloading

e C++ uses type safe I/0O

— Each I/O operation is automatically performed in a manner
sensitive to the data type

e Extensibility

— Users may specify 1/0 of user-defined types as well as standard
types

Streams

e Stream

— A transfer of information in the form of a sequence of
bytes

* |/O Operations:

— Input: A stream that flows from an input device (i.e.:
keyboard, disk drive, network connection) to main
memory

— Output: A stream that flows from main memory to an
output device (i.e.: screen, printer, disk drive, network
connection)

Streams

* |/O operations are a bottleneck

— The time for a stream to flow is many times larger than the time it
takes the CPU to process the data in the stream

 Low-level I/O
— Unformatted
— Individual byte unit of interest
— High speed, high volume, but inconvenient for people

* High-level I/O
— Formatted

— Bytes grouped into meaningful units: integers, characters, etc.
— Good for all I/O except high-volume file processing

lostream Library Header Files

« Jostream library:

— <1ostream.h>: Contains cin, cout, cerr and clog
objects

— <1omanip.h>: Contains parameterized stream
manipulators

Stream Input/Output Classes and Objects

* 10S:
— 1streamand ostreaminherit from 10s
 jostreaminherits from i1streamand ostream.

¢ << (left-shift operator)
— Overloaded as stream insertion operator

« >> (right-shift operator)
— Overloaded as stream extraction operator

— Both operators used with cin, cout, cerr, clog, and with user-
defined stream objects

Stream Input/Output Classes and Objects

Figure 21.1 Portion of the stream |/O class hierarchy.

i0s

A

istream ostream

\/

iostream

Stream Input/Output Classes and Objects

* 1stream: input streams

cin >> grade;

 cin knows what type of data is to be assigned to
grade (based on the type of grade).

* OStTream: output streams
— cout << grade;
 cout knows the type of data to output
— cerr << errorMessage,
* Unbuffered - prints errorMessage immediately.
— clog << errorMessage;

* Buffered - prints errorMessage as soon as output
buffer is full or flushed

Stream Input/Output Classes and Objects

Figure 21.2 Portion of stream-1/0 class hierarchy with key file-processing classes.

10s
istream ostream
ifstream iostream ofstream

fstream

Stream Output

ostream: performs formatted and unformatted
output

— Uses put for characters and write for unformatted output
— OQutput of integers in decimal, octal and hexadecimal

— Varying precision for floating points

— Formatted text outputs

Stream-Insertion Operator

* << isoverloaded to output built-in types
— Can also be used to output user-defined types
— cout << ‘\n’;
* Prints newline character

— cout << endl;

« end]l is a stream manipulator that issues a newline character
and flushes the output buffer

— cout << flush;
« flush flushes the output buffer

1 // Fig. 21.3: fig21_03.cpp

2 // outputting a string using stream insertion. A Outline
3 #include <iostream>

: Y

5 using std::cout; f|921_03.cpp

6

7 1int mainQ)

8 {

9 cout << "welcome to C++!\n";

10

11 return 0;

12 } // end function main program Output

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

// Fig. 21.4: fig21_04.cpp A
// Outputting a string using two stream insertions.
#include <iostream> v

Qutline

fig21 04.cpp

using std::cout;

int mainQ
{

cout << "welcome to ";

© 00 N OO 0o A W N PP

10 cout << "C++I\n";
11

12 return 0;

13 } // end function main

N rogram Output

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

// Fig. 21.5: fig21_05.cpp A
// Using the endl stream manipulator.
#include <iostream> v

fig21 _05.cpp

Qutline

using std::cout;
using std::endl;

int main(Q)
{

10 cout << "Welcome to ";

© 00 N O o b~ W N P

11 cout << "C++!
12 cout << endl; // end Tine stream manipulator
13

14 return 0;

15 } // end function main

Welcome to CH! e

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

// Fig. 21.6: fig21_06.cpp A
// Outputting expression values.
#include <iostream> v

fig21 _06.cpp

Qutline

using std::cout;
using std::endl;

int mainQ

{

© 00 N O o B W N PP

cout << "47 plus 53 is ";

=
N R O

// parentheses not needed; used for clarity

=
w

cout << (47 + 53); // expression

[EE
IS

cout << endl;

=
(&)

16 return 0;
17 } // end function main

Y =" Ot

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

Cascading Stream-Insertion/Extraction
Operators

* << : Associates from left to right, and returns a
reference to its left-operand object (i.e. cout).

— This enables cascading

cout << "How" << " are" << " you?";

Make sure to use parenthesis:

cout << "1 + 2 =" << (1 + 2);

NOT
cout << "1 + 2 =" << 1 + 2;

// Fig. 21.7: fig21_07.cpp A
// Cascading the overloaded << operator.
#include <iostream> v

Qutline

fig21 _07.cpp

using std::cout;
using std::endl;

int mainQ)

{

10 cout << "47 plus 53 is " << (47 + 53) << endl;
11

12 return 0;

13 } // end function main

N - 0gram Output

© 00 N O 0o A W N P

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

Output of char * Variables

« << will output a variable of type char * as a
string

* To output the address of the first character of that
string, cast the variable as type void *

1 // Fig. 21.8: fig21 _08.cpp

2 // Printing the address stored in a char* variable A Outline
3 #include <iostream> v

4 ;

5 using std::cout; fngl—OS'Cpp
6 using std::endl;

.

8 1nt main(Q

9 {

10 const char *string = "test";

11

12 cout << "value of string is: " << string

13 << "\nvalue of static_cast< void * >(string) is: "

14 << static_cast< void * >(string) << endl;

15 return 0;

16 } // end function main

0046C070 -

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

Character Output with Member Function
put; Cascading puts

* put member function

— OQOutputs one character to specified stream
cout.put('A");

— Returns a reference to the object that called it, so may be
cascaded

cout.put('A").put(C '\n');
— May be called with an ASCll-valued expression
cout.put(65);
* Qutputs A

Stream Input

* >> (stream-extraction)

— Used to perform stream input
— Normally ignores whitespaces (spaces, tabs, newlines)

— Returns zero (false) when EOF is encountered, otherwise
returns reference to the object from which it was invoked (i.e.
cin)

 >> controls the state bits of the stream

— failbit setif wrong type of data input
— badbit set if the operation fails

Stream-Extraction Operator

 >> and << have relatively high precedence

— Conditional and arithmetic expressions must be contained in
parentheses

e Popular way to perform loops

while (cin >> grade)

* Extraction returns O (false) when EOF encountered, and
loop ends

1 // Fig. 21.9: fig21_09.cpp

2 // cCalculating the sum of two integers input from the keyboard A Outline
3 // with cin and the stream-extraction operator. v

4 #include <iostream>

. fig21 _09.cpp
6 using std::cout;

7 using std::cin;

8 using std::endl;

9

10 int main(Q

11 {

12 int x, y;

13

14 cout << "Enter two integers: ";

15 cin >> X >> y;

16 cout << "sum of " << x << " and " <<y << " is: "

17 << (X +y) << endl;

18

19 return 0;

20 } // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

1 // Fig. 21.10: fig21_10.cpp

2 // Avoiding a precedence problem between the stream-insertion A OUtIine
3 // operator and the conditional operator. v

4 // Need parentheses around the conditional expression.]

5 #include <iostream> fngl_lO.Cpp
6

7 using std::cout;

8 wusing std::cin;

9 wusing std::endl;

10

11 1dnt mainQ

12 {

13 int x, y;

14

15 cout << "Enter two integers: ";

16 cin >> X >> y;

17 cout << X << (x =y ? " is" : " is not")

18 << " equal to " << y << endl;

19

20 return 0;

21 } // end function main

Program Output

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

© 00 N o 0o b~ W DN PP

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 21.11: fig21_11.cpp
// Stream-extraction operator returning false on end-of-file.
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main(Q)

{
int grade, highestGrade = -1;
cout << "Enter grade (enter end-of-file to end): ";
while (cin >> grade) {
if (grade > highestGrade)
highestGrade = grade;

cout << "Enter grade (enter end-of-file to end): ";
} // end while

cout << "\n\nHighest grade is: << highestGrade << endl;
return 0;

} // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A Outline
\4
fig21 11.cpp

A
v

Qutline

Program Output

Enter grade (enter end-of-file to end): *Z
Highest grade is: 99

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

21.4.2 get and getline Member Functions

e cin.eof(): returns true if end-of-file has
occurred on cin

« cin.get(): inputs acharacter from stream
(even white spaces) and returns it

« cin.get(c):inputsacharacter from stream
and storesitin C

© 00O N O 0o b~ W N PP

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 21.12: fig21_12.cpp
// Using member functions get, put and eof.
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int mainQ

{

char c;

cout << "Before input, cin.eof() is " << cin.eof()

<< "\nEnter a sentence followed by end-of-file:\n";

while ((¢ = cin.get()) != EOF)
cout.put(c);

cout << "\NnEOF in this system is: << C;

cout << "\nAfter input, cin.eof() is " << cin.eof() << endl;
return 0;

} // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A Outline
\4
fig21 _12.cpp

Stream Manipulators

e Stream manipulator capabilities

— Setting field widths

— Setting precisions

— Setting and unsetting format flags

— Setting the fill character in fields

— Flushing streams

— Inserting a newline in the output stream and flushing the stream

— Inserting a null character in the output stream and skipping
whitespace in the input stream

Integral Stream Base: dec, oct, hex and

setbase
« oct, hex or dec:

— Change base of which integers are interpreted from the stream.
Example:
int n = 15;
cout << hex << n;
— Prints "F"

e setbase:

— Changes base of integer output
— Load <1omanip>

— Accepts an integer argument (10, 8, or 16)
cout << setbase(1l6) << n;

— Parameterized stream manipulator - takes an argument

© 00 N o o B~ W DN P

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 21.16: fig21_16.cpp
// Using hex, oct, dec and setbase stream manipulators.

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

#include <iomanip>

using std::hex;
using std::dec;
using std::oct;
using std::setbase;

int mainQ

{

int n;

cout << "Enter a decimal number: ";

cin >> n;

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A

Qutline

\'%

fig21 16.cpp (Part 1
of 2)

23
24
25
26
27
28
29
30
31

cout << n << in hexadecimal is:

<< hex << n << "\n'

<< dec << n << in octal 1s:

<< oct << n << '"\n'

<< setbase(10) << n << in decimal is:

<< n << endl;

return 0;

} // end function main

20 in decimal is: 20

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A

Qutline

\'%

fig21 16.cpp (Part 2
of 2)

Program Output

Floating-Point Precision (precision,
setprecision)

 precision
— Member function
— Sets number of digits to the right of decimal point
cout.precision(2);
— cout.precision() returns current precision setting

* setprecision
— Parameterized stream manipulator
— Like all parameterized stream manipulators, <ioman1ip> required
— Specify precision:
cout << setprecision(2) << X;

* For both methods, changes last until a different
value is set

© 0O N O o B~ WDN PP

NN NN N NDN R R P R R B R R R
o U0 N W NP O © 0 N O o » W N PR O

// Fig. 21.17: fig21_17.cpp
// controlling precision of floating-point values

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

#include <iomanip>
using std::io0s;
using std::setiosflags;
using std::setprecision;
#include <cmath>
int mainQ
{
double root2 = sqrt(2.0);

int places;

cout << setiosflags(ios::fixed)

<< "Square root of 2 with precisions 0-9.\n"

<< "Precision set by the '

<< "precision member function:" << endl;

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A

Qutline

\'%

fig21 17.cpp (Part 1
of 2)

27
28
29
30
31
32
33
34
35
36
37
38

for (places = 0; places <= 9; places++) {
cout.precision(places);
cout << root2 << '\n';

} // end for

cout << "\nPrecision set by the "

<< "setprecision manipulator:\n";

for (places = 0; places <= 9; places++)
cout << setprecision(places) << root2 << '\n';

return 0;

39 } // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A

Qutline

\'%

fig21 _17.cpp (Part 2
of 2)

A
v

Qutline

Program Output

.41

.414
.4142
.41421
.414214
.4142136
.41421356

6%%%?&?21992 2004 by Deitel & Associates, Inc. and Pearson

[i [Ty T ~ ALl D et e D o m om e s A

1
1
1
1
1
1
1
1.

Field Width(setw, width)

10s width member function

Sets field width (number of character positions a value should be
output or number of characters that should be input)

Returns previous width

If values processed are smaller than width, fill characters inserted
as padding

Values are not truncated - full number printed

cin.width(5);

setw stream manipulator
cin >> setw(5) >> string;

Remember to reserve one space for the null
character

© 00 N o o A~ W N PP

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// fig21_18.cpp
// Demonstrating the width member function
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int mainQ
{
int w = 4;
char string[10];

cout << "Enter a sentence:\n";
cin.width(5);

while (cin >> string) {
cout.width(w++);
cout << string << endl;
cin.width(5);

} // end while

return 0;
} // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A Outline
\4
fig21 18.cpp

A
v

Qutline

Program Output

memb
er
func
tion

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

User-Defined Manipulators

* We can create our own stream manipulators

— bell

— ret (carriage return)

— tab
— endLine

* Parameterized stream manipulators

— Consult installation manuals

© 00 N oo o B~ W DN P

N N NN NN R B P R B PR R R R
g A W N P O © 0 N O U A W N R O

// Fig. 21.19: fig21_19.cpp A
// Creating and testing user-defined, nonparameterized

// stream manipulators. v
#include <iostream>

fig21 19.cpp (Part 1

of 2)

using std::ostream;
using std::cout;
using std::flush;

// bell manipulator (using escape sequence \a)
ostream& bell(ostream& output) { return output << '\a'; }

// ret manipulator (using escape sequence \r)
ostream& ret(ostream& output) { return output << '\r'; }

// tab manipulator (using escape sequence \t)
ostream& tab(ostream& output) { return output << "\t'; }

// endLine manipulator (using escape sequence \n
// and the flush member function)
ostream& endLine(ostream& output)

{
return output << '\n' << flush;
} // end function endLine

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

Qutline

26
27
28
29
30
31
32
33
34
35

int main()
{
cout << "Testing the tab manipulator:" << endLine
<< '"a' << tab << 'b" << tab << 'c¢' << endLine
<< "Testing the ret and bell manipulators:"
<< endLine << ".......... We
cout << bell;
cout << ret << "--—-- << endLine;

return 0;

} // end function main

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

rF.d, o oo ot e AILD e D o moiime v

A

Qutline

\'%

fig21 19.cpp (Part 2
of 2)

Program Output

21.7 Stream Format States

* Format flags

— Specify formatting to be performed during stream I/0O operations

« setf,unsetf and flags
— Member functions that control the flag settings

Stream Error States

« eofbit

— Set for an input stream after end-of-file encountered

— cin.eof () returns true if end-of-file has been encountered on
cin

« failbit
— Set for a stream when a format error occurs

— cin.fail() -returns true if a stream operation has failed
— Normally possible to recover from these errors

Stream Error States
 badbit

— Set when an error occurs that results in data loss
— cin.bad() returns true if stream operation failed
— normally nonrecoverable

« goodbit
— Set for a stream if neither eofbit, failbit or badbit are set
— cin.good() returns true if the bad, fail and eof functions
would all return false.
— /O operations should only be performed on “good” streams

e rdstate

— Returns the state of the stream

— Stream can be tested with a switch statement that examines all
of the state bits

— Easier to use eof, bad, fail, and good to determine state

Stream Error States
e Cclear

— Used to restore a stream’s state to “good”
— cin.clear() clears cin and sets goodbit for the stream
— cin.clear(ios::failbit) actually setsthe failbit

* Might do this when encountering a problem with a user-
defined type

 Other operators
— operator!
e Returns true if badbit or failbit set
— operator void¥*
* Returns false if badbit or failbit set
— Useful for file processing

© 00 N O 0o b~ W N PP

10
11
12
13
14
15
16
17
18
ig
20
21
22
23
24
25
26
27

// Fig. 21.29: fig21 _29.cpp
// Testing error states.

#include <iostream>

using std::cout;
using std::endl;
using std::cin;

int mainQ)
{
int Xx;
cout <<
<<
<<
<<
<<
<<

<<

"Before a bad input
"\ncin.rdstate(): "
"\n cin.eof(): "
"\n cin.failQ: "
"\n cin.bad(: "
"\n cin.good(Q): "

"\n\nExpects an integer, but enter a character: ";

cin >> X;

cout <<
<<
<<
<<
<<

<<

A
v

fig21 29.cpp (Part 1
of 2)

Qutline

operation:"

<<

<<

<<

<<

<<

cin.rdstate()
cin.eof()
cin.failQ
cin.bad()
cin.good()

"\nAfter a bad input operation:"

"\ncin.rdstate(): "
"\n cin.eof(): "
"\n cin.failQ: "
"\n cin.bad(: "
"\n cin.good(Q): "

<<

<<

<<

<<

<<

cin.rdstate()
cin.eof(Q

cin.failQ

cin.bad(Q

cin.good() << "\n\n";

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson

[i [LI

ALl D b o Y o o ime s A

28 cin.clearQ;

29 A

Outline
30 cout << "After cin.clear(Q" v
31 << "\ncin.fail(Q: " << cin.failQ :
32 << "\ncin.good(): " << cin.good() << endl; fIng_29.Cpp (Part 2
33 return 0; of 2)

34 } // end function main

Program Output

cin.bad(): O
cin.good(): O

After cin.clear()

£
Cl@ Co%i(]i t 19%2 2004 by Deitel & Associates, Inc. and Pearson

....... T ~ ALl D et e D o m om e s A

UNIT-5
Exception Handling

Introduction

* Errors can be dealt with at place error occurs

— Easy to see if proper error checking implemented
— Harder to read application itself and see how code works

e Exception handling

— Makes clear, robust, fault-tolerant programs
— C++ removes error handling code from "main line" of program

e Common failures

— new not allocating memory

— Out of bounds array subscript
— Division by zero

— Invalid function parameters

Introduction

* Exception handling - catch errors before they
occur

Deals with synchronous errors (i.e., Divide by zero)

Does not deal with asynchronous errors - disk I/O completions,
mouse clicks - use interrupt processing

Used when system can recover from error
* Exception handler - recovery procedure

Typically used when error dealt with in different place than where
it occurred

Useful when program cannot recover but must shut down cleanly

e Exception handling should not be used for
program control

Not optimized, can harm program performance

Introduction

* Exception handling improves fault-tolerance

— Easier to write error-processing code
— Specify what type of exceptions are to be caught

* Most programs support only single threads

— Techniques in this chapter apply for multithreaded OS as well
(windows NT, OS/2, some UNIX)

e Exception handling another way to return control
from a function or block of code

When Exception Handling Should Be Used

* Error handling should be used for

— Processing exceptional situations

— Processing exceptions for components that cannot handle them
directly

— Processing exceptions for widely used components (libraries, classes,
functions) that should not process their own exceptions

— Large projects that require uniform error processing

Other Error-Handling Techniques

Use assert

— If assertion false, the program terminates

lgnore exceptions

— Use this "technique" on casual, personal programs - not commercial!

Abort the program

— Appropriate for nonfatal errors give appearance that program functioned correctly
— Inappropriate for mission-critical programs, can cause resource leaks

Set some error indicator
— Program may not check indicator at all points where error could occur

Other Error-Handling Techniques (ll)

e Test for the error condition

— Issue an error message and call exit
— Pass error code to environment

- setjump and longjump

— In<csetjmp>
— Jump out of deeply nested function calls back to an error handler.

— Dangerous - unwinds the stack without calling destructors for automatic objects
(more later)

e Specific errors

— Some have dedicated capabilities for handling them

— If new fails to allocate memory new_handler function executes to deal with
problem

Basics of C++ Exception Handling: try, throw,
catch

* A function can throw an exception object if it
detects an error

— Object typically a character string (error message) or class
object

— |If exception handler exists, exception caught and handled
— Otherwise, program terminates

Basics of C++ Exception Handling: try, throw,
catch ()

* Format
— Enclose code that may have an error in try block

— Follow with one or more catch blocks
* Each catch block has an exception handler

— If exception occurs and matches parameter in catch block,
code in catch block executed

— If no exception thrown, exception handlers skipped and
control resumes after catch blocks

— throw point - place where exception occurred
e Control cannot return to throw point

Throwing an Exception

« throw - indicates an exception has occurred

— Usually has one operand (sometimes zero) of any type
 If operand an object, called an exception object
* Conditional expression can be thrown

— Code referenced in a try block can throw an exception
— Exception caught by closest exception handler

— Control exits current try block and goes to catch handler (if it
exists)

— Example (inside function definition)
if (denominator == 0)
throw DivideByZeroException();
 Throws adividebyzeroexception object

Throwing an Exception (Il)

* Exception not required to terminate program

— However, terminates block where exception occurred

Catching an Exception

Exception handlers are in catch blocks

— Format: catch(exceptionType parameterName) {
exception handling code

¥
— Caught if argument type matches throw type

— If not caught then terminate called which (by default) calls
abort

— Example:

catch (DivideByZeroException ex) {

cout << "Exception occurred: "
<<'"\n'

<< ex.what()

}

e Catches exceptions of type DivideByZeroException

Catching an Exception

« catch parameter matches thrown object when

— They are of the same type
* Exact match required - no promotions/conversions allowed
— The catch parameter is a pub11c base class of the thrown
object

— The catch parameter is a base-class pointer/ reference
type and the thrown object is a derived-class pointer/
reference type

— The catch handleris catch(...)
— Thrown const objects have const in the parameter type

Exception Specifications

» Exception specification (throw list)

— Lists exceptions that can be thrown by a function
Example:

int g(double h) throw (C a, b, c)
{

}

— Function can throw listed exceptions or derived types
— If other type thrown, function unexpected called

— throw() (i.e., no throw list) states that function will not throw any
exceptions

* In reality, function can still throw exceptions, but calls
unexpected (more later)

— If no throw list specified, function can throw any exception

// function body

Processing Unexpected Exceptions

* Function unexpected

— Calls the function specified with set_unexpected
e Default: terminate

* Function terminate

— Calls function specified with set_terminate
e Default: abort

e set_terminate and set_unexpected

— Prototypes in <exception>
— Take pointers to functions (i.e., Function name)
* Function must return void and take no arguments

— Returns pointer to last function called by terminate or
unexpected

Stack Unwinding

* Function-call stack unwound when exception
thrown and not caught in a particular scope

— Tries to catch exception in next outer try/catch block

— Function in which exception was not caught terminates
* Local variables destroyed
e Control returns to place where function was called

— |If control returns to a try block, attempt made to catch exception
* Otherwise, further unwinds stack

— |If exception not caught, terminate called

Rethrowing an Exception

* Rethrowing exceptions

— Used when an exception handler cannot process an
exception
— Rethrow exception with the statement:

throw;
* No arguments

 If no exception thrown in first place, calls terminate

— Handler can always rethrow exception, even if it
performed some processing

— Rethrown exception detected by next enclosing try block

Catching an Exception

* Catch all exceptions
catch(...) - catches all exceptions

* You do not know what type of exception occurred
* There is no parameter name - cannot reference the object

* If no handler matches thrown object
— Searches next enclosing try block
* |f none found, terminate called
— If found, control resumes after last catch block

— If several handlers match thrown object, first one found is
executed

Catching an Exception

* Unreleased resources

— Resources may have been allocated when exception thrown

— catch handler should delete space allocated by new and
close any opened files

« catch handlers can throw exceptions

— Exceptions can only be processed by outer try blocks

