
UNIT-1
OBJECT ORIENTED

THINKING

Programming Paradigms

• The most important aspect of C++ is its ability
to support many different programming
paradigms
• procedural abstraction

• modular abstraction

• data abstraction

• object oriented programming (this is discussed
later, once we learn about the concept of
inheritance)

Procedural Abstraction

• This is where you build a “fence” around
program segments, preventing some parts of
the program from “seeing” how tasks are
being accomplished.

• Any use of globals causes side effects that may
not be predictable, reducing the viability of
procedural abstraction

Modular Abstraction

• With modular abstraction, we build a “screen”
surrounding the internal structure of our program
prohibiting programmers from accessing the data
except through specified functions.

• Many times data structures (e.g., structures)
common to a module are placed in a header files
along with prototypes (allows external references)

Modular Abstraction

• The corresponding functions that manipulate the
data are then placed in an implementation file.

• Modules (files) can be compiled separately, allowing
users access only to the object (.o) files

• We progress one small step toward OOP by thinking
about the actions that need to take place on data...

Modular Abstraction

• We implement modular abstraction by
separating out various
functions/structures/classes into multiple .cpp
and .h files.

• .cpp files contain the implementation of our
functions

• .h files contain the prototypes, class and
structure definitions.

Modular Abstraction

• We then include the .h files in modules that
need access to the prototypes, structures, or
class declarations:
• #include “myfile.h”

• (Notice the double quotes!)

• We then compile programs (on UNIX) by:
• g++ main.cpp myfile.cpp

• (Notice no .h file is listed on the above line)

Data Abstraction

• Data Abstraction is one of the most powerful
programming paradigms

• It allows us to create our own user defined
data types (using the class construct) and

• then define variables (i.e., objects) of those new
data types.

Data Abstraction

• With data abstraction we think about what
operations can be performed on a particular
type of data and not how it does it

• Here we are one step closer to object oriented
programming

Data Abstraction

• Data abstraction is used as a tool to increase
the modularity of a program

• It is used to build walls between a program
and its data structures

• what is a data structure?

• talk about some examples of data structures

• We use it to build new abstract data types

Data Abstraction

• An abstract data type (ADT) is a data type that
we create

• consists of data and operations that can be
performed on that data

• Think about a char type

• it consists of 1 byte of memory and operations
such as assignment, input, output, arithmetic
operations can be performed on the data

Data Abstraction

• An abstract data type is any type you want to add to
the language over and above the fundamental types

• For example, you might want to add a new type
called: list

• which maintains a list of data

• the data structure might be an array of structures

• operations might be to add to, remove, display all, display
some items in the list

Data Abstraction

• Once defined, we can create lists without
worrying about how the data is stored

• We “hide” the data structure used for the data
within the data type -- so it is transparent to
the program using the data type

• We call the program using this new data type:
the client program (or client)

Data Abstraction

• Once we have defined what data and operations
make sense for a new data type, we can define them
using the class construct in C++

• Once you have defined a class, you can create as
many instances of that class as you want

• Each “instance” of the class is considered to be an
“object” (variable)

Data Abstraction

• Think of a class as similar to a data type
• and an object as a variable

• And, just as we can have zero or more
variables of any data type...
• we can have zero or more objects of a class!

• Then, we can perform operations on an object
in the same way that we can access members
of a struct...

Procedural versus Object-Oriented
Programming

• Procedural programming focuses on the
process/actions that occur in a program. The
program starts at the beginning, does
something, and ends.

• Object-Oriented programming is based on the
data and the functions that operate on it.
Objects are instances of abstract data types
that represent the data and its functions

Limitations of Procedural
Programming

• If the data structures change, many
functions must also be changed

• Programs that are based on complex
function hierarchies are:

– difficult to understand and maintain

– difficult to modify and extend

– easy to break

Object-oriented programming – As the name suggests uses

objects in programming. Object-oriented programming aims to

implement real-world entities like inheritance, hiding,

polymorphism, etc in programming. The main aim of OOP is to

bind together the data and the functions that operate on them so

that no other part of the code can access this data except that

function.

Object-Oriented Programming
Terminology

• class: like a struct (allows bundling of
related variables), but variables and functions
in the class can have different properties than
in a struct

• object: an instance of a class, in the same
way that a variable can be an instance of a
struct

Classes and Objects

• A Class is like a blueprint and objects are like
houses built from the blueprint

Object-Oriented Programming
Terminology

• attributes: members of a class

• methods or behaviors: member functions of a
class

More Object Terms

• data hiding: restricting access to certain
members of an object

• public interface: members of an object that
are available outside of the object. This allows
the object to provide access to some data and
functions without sharing its internal details
and design, and provides some protection
from data corruption

Creating a Class

• Objects are created from a class

• Format:

class ClassName

{

declaration;

declaration;

};

Classic Class Example

Access Specifiers

• Used to control access to members of the
class

• public: can be accessed by functions
outside of the class

• private: can only be called by or accessed
by functions that are members of the class

• In the example on the next slide, note that the
functions are prototypes only (so far)

Class Example

Access Specifiers

Private Members

Public Members

Access Specifiers (continued)

• Can be listed in any order in a class

• Can appear multiple times in a class

• If not specified, the default is private

Using const With Member Functions

• const appearing after the parentheses in a
member function declaration specifies that
the function will not change any data in the
calling object.

Defining a Member Function

• When defining a member function:

– Put prototype in class declaration

– Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth(double w)

{

width = w;

}

Global Functions

• Functions that are not part of a class, that is,
do not have the Class::name notation,
are global. This is what we have done up to
this point.

Accessors and Mutators

• Mutator: a member function that stores a
value in a private member variable, or
changes its value in some way

• Accessor: function that retrieves a value from
a private member variable. Accessors do not
change an object's data, so they should be
marked const.

Defining an Instance of a Class

• An object is an instance of a class

• Defined like structure variables:
Rectangle r;

• Access members using dot operator:
r.setWidth(5.2);

cout << r.getWidth();

• Compiler error if you attempt to access a
private member using dot operator

Derived Attributes

• Some data must be stored as an attribute.

• Other data should be computed. If we stored
“area” as a field, its value would have to
change whenever we changed length or
width.

• In a class about a “person,” store birth date
and compute age

Pointers to Objects

• Can define a pointer to an object:
Rectangle *rPtr;

• Can access public members via pointer:
rPtr = &otherRectangle;

rPtr->setLength(12.5);

cout << rPtr->getLength() << endl;

Dynamically Allocating Objects

Rectangle *r1;

r1 = new Rectangle();

• This allocates a rectangle and returns a
pointer to it. Then:

r1->setWidth(12.4);

Private Members

• Making data members private provides
data protection

• Data can be accessed only through public
functions

• Public functions define the class’s public
interface

Private Members

Code outside the class must use the class's

public member functions to interact with the

object.

Separating Specification from
Implementation

• Place class declaration in a header file that serves
as the class specification file. Name the file
ClassName.h, for example, Rectangle.h

• Place member function definitions in
ClassName.cpp, for example,
Rectangle.cpp File should #include the
class specification file

• Programs that use the class must #include the
class specification file, and be compiled and
linked with the member function definitions

Inline Member Functions

• Member functions can be defined

– inline: in class declaration

– after the class declaration

• Inline appropriate for short function bodies:
int getWidth() const

{ return width; }

Tradeoffs – Inline vs. Regular Member
Functions

• Regular functions – when called, compiler
stores return address of call, allocates
memory for local variables, etc.

• Code for an inline function is copied into
program in place of call – larger executable
program, but no function call overhead, hence
faster execution

Very brief history of C++

C

C++

Object-oriented programming

• Object-oriented
programming (OOP) seeks
to define a program in terms of
the things in the problem
(files, molecules, buildings,
cars, people, etc.), what they
need, and what they can do.

• Data:

• molecular weight,

structure, common names,

etc.

• Methods:

• IR(wavenumStart,

wavenumEnd) : return IR

emission spectrum in

range

class

GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum =

ch4.IR(1000,3500)

Name =

co2.common_name

Objects (instances of

a class)

“pseudo-code”

Object-oriented programming

• OOP defines classes to
represent these things.

• Classes can contain data and
methods (internal functions).

• Classes control access to
internal data and methods. A
public interface is used by
external code when using the
class.

• This is a highly effective way of
modeling real world problems
inside of a computer program.

public interface

private data and methods

“Class Car”

Characteristics of C++

• C++ is…
– Compiled.

• A separate program, the compiler, is used to turn C++ source code into a form
directly executed by the CPU.

– Strongly typed and unsafe
• Conversions between variable types must be made by the programmer (strong

typing) but can be circumvented when needed (unsafe)

– C compatible
• call C libraries directly and C code is nearly 100% valid C++ code.

– Capable of very high performance
• The programmer has a very large amount of control over the program execution

– Object oriented
• With support for many programming styles (procedural, functional, etc.)

• No automatic memory management
– The programmer is in control of memory usage

When to choose C++

• Despite its many competitors C++
has remained popular for ~30
years and will continue to be so in
the foreseeable future.

• Why?
– Complex problems and programs

can be effectively implemented

– OOP works in the real world!

– No other language quite matches
C++’s combination of
performance, expressiveness,
and ability to handle complex
programs.

• Choose C++ when:
– Program performance matters

• Dealing with large amounts of
data, multiple CPUs, complex
algorithms, etc.

– Programmer productivity is less
important
• It is faster to produce working

code in Python, R, Matlab or
other scripting languages!

– The programming language itself
can help organize your code
• Ex. In C++ your objects can closely

model elements of your problem

– Access to libraries
• Ex. Nvidia’s CUDA Thrust library

for GPUs

– Your group uses it already!

Behind the Scenes: The Compilation
Process

Hello, World! explained

The main routine – the start of every C++
program! It returns an integer value to the
operating system and (in this case) takes no
arguments: main()

The return statement returns an integer
value to the operating system after
completion. 0 means “no error”. C++
programs must return an integer value.

Hello, World! explained

loads a header file containing function and
class definitions

Loads a namespace called std. Namespaces
are used to separate sections of code for
programmer convenience. To save typing
we’ll always use this line in this tutorial.

 cout is the object that writes to the stdout device, i.e.
the console window.

 It is part of the C++ standard library.

 Without the “using namespace std;” line this would
have been called as std::cout. It is defined in the
iostream header file.

 << is the C++ insertion operator. It is used to pass
characters from the right to the object on the left.
endl is the C++ newline character.

Header Files

• C++ (along with C) uses header
files as to hold definitions for the
compiler to use while compiling.

• A source file (file.cpp) contains
the code that is compiled into an
object file (file.o).

• The header (file.h) is used to tell
the compiler what to expect
when it assembles the program
in the linking stage from the
object files.

• Source files and header files can
refer to any number of other
header files.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

C++ language headers aren’t
referred to with the .h suffix.
<iostream> provides definitions
for I/O functions, including the
cout function.

Slight change

• Let’s put the message into some
variables of type string and print
some numbers.

• Things to note:
– Strings can be concatenated with a +

operator.

– No messing with null terminators or
strcat() as in C

• Some string notes:
– Access a string character by brackets

or function:

• msg[0]  “H” or msg.at(0) 
“H”

• C++ strings are mutable – they
can be changed in place.

• Press F9 to recompile & run.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

• string is not a basic type (more
on those later), it is a class.

• string hello creates an
instance of a string called
“hello”.

• hello is an object.
• Remember that a class defines

some data and a set of
functions (methods) that
operate on that data.

• Let’s use C::B to see what
some of these methods are….

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

• Update the code as you see
here.

• After the last character is
entered C::B will display some
info about the string class.

• If you click or type something
else just delete and re-type the
last character.

• Ctrl-space will force the list to
appear.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

msg

return 0;

}

A first C++ class: string

List of
other
string
objects

Shows this
function
(main) and
the type of
msg
(string)

List of
string
methods

• Next: let’s find the size() method without scrolling for
it.

A first C++ class: string

• Start typing “msg.size()” until it appears in the list. Once it’s
highlighted (or you scroll to it) press the Tab key to auto-enter it.

• On the right you can click “Open declaration” to see how the C++
compiler defines size(). This will open basic_string.h, a built-in file.

A first C++ class: string

• Tweak the code to print the
number of characters in the
string, build, and run it.

• From the point of view of
main(), the msg object has
hidden away its means of
tracking and retrieving the
number of characters
stored.

• Note: while the string class
has a huge number of
methods your typical C++
class has far fewer!

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " +

world ;

cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << msg.size() << endl

;

return 0;

}

 Note that cout prints
integers without any
modification!

Break your code.

• Remove a semi-colon. Re-compile. What messages do you get from the compiler and C::B?
• Fix that and break something else. Capitalize string  String

• C++ can have elaborate error messages when compiling. Experience is the only way to learn
to interpret them!

• Fix your code so it still compiles and then we’ll move on…

Basic Syntax

• C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and
we’ll cover more as we go along.

• Curly braces are used to denote a code block (like the main() function):
{ … some code … }

• Statements end with a semicolon:

• Comments are marked for a single line with a // or for multilines with a
pair of /* and */ :

• Variables can be declared at any time in a code block.
void

my_function() {

int a ;

a=1 ;

int b;

}

int a ;

a = 1 + 3

;

// this is a

comment.

/* everything in

here

is a

comment */

• Functions are sections of code that are called from other code. Functions always
have a return argument type, a function name, and then a list of arguments
separated by commas:

• A void type means the function does not return a value.

• Variables are declared with a type and a name:

int add(int x, int y)

{

int z = x + y ;

return z ;

}

// No arguments? Still need ():

void my_function() {

/* do something...

but a void value means

the

return statement can be

skipped.*/

}

// Specify the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes types can be

inferred

auto z = x;

• A sampling of arithmetic operators:
– Arithmetic: + - * / % ++ --
– Logical: && (AND) ||(OR) !(NOT)

– Comparison: == > < >= <= !=

• Sometimes these can have special meanings
beyond arithmetic, for example the “+” is used
to concatenate strings.

• What happens when a syntax error is made?
– The compiler will complain and refuse to compile

the file.
– The error message usually directs you to the error

but sometimes the error occurs before the compiler
discovers syntax errors so you hunt a little bit.

Built-in (aka primitive or intrinsic)
Types

• “primitive” or “intrinsic” means these types are not objects

• Here are the most commonly used types.

• Note: The exact bit ranges here are platform and compiler dependent!
– Typical usage with PCs, Macs, Linux, etc. use these values

– Variations from this table are found in specialized applications like embedded system
processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned
short

16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating
point

double 64-bit floating
point

long long 128-bit integer

long double 128-bit floating
point

http://www.cplusplus.com/doc/tut
orial/variables/

Need to be sure of integer sizes?

• In the same spirit as using integer(kind=8) type notation in Fortran, there are type
definitions that exactly specify exactly the bits used. These were added in C++11.

• These can be useful if you are planning to port code across CPU architectures (ex.
Intel 64-bit CPUs to a 32-bit ARM on an embedded board) or when doing
particular types of integer math.

• For a full list and description see: http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

• Variable and object values are stored in particular locations in the computer’s
memory.

• Reference and pointer variables store the memory location of other variables.

• Pointers are found in C. References are a C++ variation that makes pointers easier
and safer to use.

• More on this topic later in the tutorial.

string hello = "Hello";

string *hello_ptr = &hello;

string &hello_ref = hello;

The object hello
occupies some
computer
memory. The asterisk indicates that hello_ptr

is a pointer to a string. hello_ptr
variable is assigned the memory
address of object hello which is
accessed with the “&” syntax.

The & here indicates that hello_ref is a
reference to a string. The hello_ref variable
is assigned the memory address of object
hello automatically.

Type Casting

• C++ is strongly typed. It will auto-convert a variable of one type to another in a
limited fashion: if it will not change the value.

• Conversions that don’t change value: increasing precision (float  double) or
integer  floating point of at least the same precision.

• C++ allows for C-style type casting with the syntax: (new type) expression

• But since we’re doing C++ we’ll look at the 4 ways of doing this in C++ next...

short x = 1 ;

int y = x ; //

OK

short z = y ; //

NO!

double x = 1.0 ;

int y = (int) x ;

float z = (float) (x

/ y) ;

Type Casting

• static_cast<new type>(expression)

– This is exactly equivalent to the C style cast.

– This identifies a cast at compile time.

– This will allow casts that reduce precision (ex. double  float)

– ~99% of all your casts in C++ will be of this type.

• dynamic_cast<new type>(expression)

– Special version where type casting is performed at runtime,
only works on reference or pointer type variables.

– Usually handled automatically by the compiler where needed,
rarely done by the programmer.

double d = 1234.56 ;

float f =

static_cast<float>(d) ;

// same as

float g = (float) d ;

Type Casting cont’d

• const_cast<new type>(expression)

– Variables labeled as const can’t have their value changed.
– const_cast lets the programmer remove or add const to

reference or pointer type variables.
– If you need to do this, you probably want to re-think your

code.

• reinterpret_cast<new type>(expression)

– Takes the bits in the expression and re-uses them
unconverted as a new type. Also only works on reference or
pointer type variables.

– Sometimes useful when reading in binary files and
extracting parameters.

“unsafe”: the
compiler will
not protect
you here!

The
programmer
must make
sure
everything is
correct!

Dange

r!

Functions
• Open the project “FunctionExample”

in C::B files
– Compile and run it!

• Open main.cpp

• 4 function calls are listed.

• The 1st and 2nd functions are identical
in their behavior.
– The values of L and W are sent to the

function, multiplied, and the product is
returned.

• RectangleArea2 uses const arguments
– The compiler will not let you modify their values

in the function.

– Try it! Uncomment the line and see what
happens when you recompile.

• The 3rd and 4th versions pass the
arguments by reference with an added
&

float RectangleArea1(float L, float W) {

return L*W ;

}

float RectangleArea2(const float L, const float W)

{

// L=2.0 ;

return L*W ;

}

float RectangleArea3(const float& L, const float&

W) {

return L*W ;

}

void RectangleArea4(const float& L, const float& W,

float& area) {

area= L*W ;

}

The function arguments L
and W are sent as type
float.

Product is computed

The return type is
float.

Using the C::B Debugger

• To show how this works we will use the C::B interactive debugger to step through the
program line-by-line to follow the function calls.

• Make sure you are running in Debug mode. This turns off compiler optimizations and has
the compiler include information in the compiled code for effective debugging.

Add a Breakpoint

• Breakpoints tell the debugger to
halt at a particular line so that the
state of the program can be
inspected.

• In main.cpp, double click to the
left of the lines in the functions to
set a pair of breakpoints. A red
dot will appear.

• Click the red arrow to start the
code in the debugger.

• The debugger will
pause in the first
function at the
breakpoint.

• Click the Debug menu, go to
Debugging Windows, and choose
Call Stack. Drag it to the right, then
go back and choose Watches. Drag
it to the right. Do the same for the
Breakpoints option. Your screen
will look something like this now…

• Controls (hover mouse over for
help):

Watches shows
the variables in
use and their
values

Call Stack shows
the functions
being called,
newest on top.

Breakpoints lists
the breakpoints
you’ve created.

Place the cursor in the
function, click to run to
the cursor

Run the next line

Step into a
function call

Step out of a
function to the
calling function.

Step by CPU
instruction. Less
useful, generally.

UNIT-2
C++ Classes and Data Abstraction

Classes

• Object-oriented design (OOD): a problem
solving methodology

• Objects: components of a solution

• Class: a collection of a fixed number of
components

• Member: a component of a class

Classes (cont’d.)

• Class definition:

– Defines a data type; no memory is allocated

– Don’t forget the semicolon after the closing brace

• Syntax:

Classes (cont’d.)

• Class member can be a variable or a function

• If a member of a class is a variable

– It is declared like any other variable

– You cannot initialize a variable when you declare it

• If a member of a class is a function

– Function prototype is listed

– Function members can (directly) access any
member of the class

Classes (cont’d.)

• Three categories of class members:

– private (default)

• Member cannot be accessed outside the class

– public

• Member is accessible outside the class

– protected

Variable (Object) Declaration

• Once defined, you can declare variables of
that class type

clockType myClock;

• A class variable is called a class object or
class instance

Accessing Class Members

• Once an object is declared, it can access the
public members of the class

• Syntax:

– The dot (.) is the member access operator

• If an object is declared in the definition of a
member function of the class, it can access
the public and private members

Built-in Operations on Classes

• Most of C++’s built-in operations do not apply to
classes

– Arithmetic operators cannot be used on class objects
unless the operators are overloaded

– Cannot use relational operators to compare two class
objects for equality

• Built-in operations that are valid for class objects:

– Member access (.)

– Assignment (=)

Assignment Operator and Classes

Class Scope

• An object can be automatic or static

– Automatic: created when the declaration is
reached and destroyed when the surrounding
block is exited

– Static: created when the declaration is reached
and destroyed when the program terminates

• Object has the same scope as other variables

Class Scope (cont’d.)

• A member of the class is local to the
class

• Can access a class member outside the
class by using the class object name and
the member access operator (.)

Functions and Classes

• Objects can be passed as parameters to
functions and returned as function values

• As parameters to functions

– Objects can be passed by value or by reference

• If an object is passed by value

– Contents of data members of the actual
parameter are copied into the corresponding data
members of the formal parameter

Reference Parameters and Class
Objects (Variables)

• Passing by value might require a large amount
of storage space and a considerable amount of
computer time to copy the value of the actual
parameter into the formal parameter

• If a variable is passed by reference

– The formal parameter receives only the address of
the actual parameter

Reference Parameters and Class
Objects (Variables) (cont’d.)

• Pass by reference is an efficient way to pass a
variable as a parameter

– Problem: when passing by reference, the actual
parameter changes when formal parameter
changes

– Solution: use const in the formal parameter
declaration

Implementation of Member Functions

• Must write the code for functions defined as
function prototypes

• Prototypes are left in the class to keep the
class smaller and to hide the implementation

• To access identifiers local to the class, use the
scope resolution operator ::

Implementation of Member Functions
(cont’d.)

Implementation of Member Functions
(cont’d.)

Implementation of Member Functions
(cont’d.)

• Once a class is properly defined and
implemented, it can be used in a program

– A program that uses/manipulates objects of a
class is called a client of that class

• When you declare objects of the class
clockType, each object has its own copy of
the member variables (hr, min, and sec)

• Called instance variables of the class

– Every object has its own instance of the data

Accessor and Mutator Functions

• Accessor function: member function that only
accesses the value(s) of member variable(s)

• Mutator function: member function that
modifies the value(s) of member variable(s)

• Constant function:

– Member function that cannot modify member
variables

– Use const in function heading

Order of public and private
Members of a Class

• C++ has no fixed order in which to declare
public and private members

• By default, all members of a class are
private

• Use the member access specifier public to
make a member available for public access

Constructors

• Use constructors to guarantee that member
variables of a class are initialized

• Two types of constructors:

– With parameters

– Without parameters (default constructor)

– Name of a constructor = name of the class

– A constructor has no type

Constructors (cont’d.)

• A class can have more than one constructor

– Each must have a different formal parameter list

• Constructors execute automatically when a
class object enters its scope

• They cannot be called like other functions

• Which constructor executes depends on the
types of values passed to the class object
when the class object is declared

Invoking a Constructor

• A constructor is automatically executed when
a class variable is declared

• Because a class may have more than one
constructor, you can invoke a specific
constructor

Invoking the Default Constructor

• To invoke the default constructor:

• Example:

clockType yourClock;

Invoking a Constructor with
Parameters

• Syntax:

• Number and type of arguments should match
the formal parameters (in the order given) of
one of the constructors

– Otherwise, C++ uses type conversion and looks for
the best match

– Any ambiguity causes a compile-time error

Constructors and Default Parameters

• A constructor can have default parameters

– Rules for declaring formal parameters are the
same as for declaring default formal parameters in
a function

– Actual parameters are passed according to same
rules for functions

• Default constructor: a constructor with no
parameters or with all default parameters

Classes and Constructors: A Precaution

• If a class has no constructor(s), C++ provides
the default constructor

– However, object declared is still uninitialized

• If a class includes constructor(s) with
parameter(s), but not the default constructor

– C++ does not provide the default constructor

Arrays of Class Objects (Variables) and
Constructors

• If you declare an array of class objects, the
class should have the default constructor

Destructors

• Destructors are functions without any type

• The name of a destructor is the character '~'
followed by class name
– For example:

~clockType();

• A class can have only one destructor
– The destructor has no parameters

• Destructor automatically executes when the
class object goes out of scope

Data Abstract, Classes,
and Abstract Data Types

• Abstraction

– Separating design details from usage

– Separating the logical properties from the
implementation details

• Abstraction can also be applied to data

• Abstract data type (ADT): data type that
separates the logical properties from the
implementation details

A struct Versus a class

• By default, members of a struct are
public

– private specifier can be used in a struct to
make a member private

• By default, the members of a class are
private

• classes and structs have the same
capabilities

A struct Versus a class (cont’d.)

• In C++, the definition of a struct was
expanded to include member functions,
constructors, and destructors

• If all member variables of a class are
public and there are no member functions

– Use a struct

Information Hiding

• Information hiding: hiding the details of the
operations on the data

• Interface (header) file: contains the specification
details
• File extension is .h

• Implementation file: contains the implementation
details
• File extension is .cpp

• In header file, include function prototypes and
comments that briefly describe the functions
– Specify preconditions and/or postconditions

Information Hiding (cont’d.)

• Implementation file must include header file
via include statement

• In include statement:

– User-defined header files are enclosed in double
quotes

– System-provided header files are enclosed
between angular brackets

Information Hiding (cont'd.)

• Precondition: A statement specifying the
condition(s) that must be true before the
function is called

• Postcondition: A statement specifying what is
true after the function call is completed

Executable Code

• To use an object in a program
– The program must be able to access the

implementation

• Visual C++, Visual Studio .NET, C++ Builder,
and CodeWarrior put the editor, compiler, and
linker into a package
– One command (build, rebuild, or make) compiles

program and links it with the other necessary files

– These systems also manage multiple file programs
in the form of a project

Static Members of a Class

• Use the keyword static to declare a
function or variable of a class as static

• A public static function or member of a
class can be accessed using the class name
and the scope resolution operator

• static member variables of a class exist
even if no object of that class type exists

Static Members of a Class (cont’d.)

• Multiple objects of a class each have their
own copy of non-static member variables

• All objects of a class share any static member
of the class

Summary

• Class: collection of a fixed number of
components

• Members: components of a class

– Accessed by name

– Classified into one of three categories:
• private, protected, and public

• Class variables are called class objects or,
simply, objects

Summary (cont’d.)

• The only built-in operations on classes are
assignment and member selection

• Constructors guarantee that data members
are initialized when an object is declared
– Default constructor has no parameters

• Destructor automatically executes when a
class object goes out of scope
– A class can have only one destructor

– The destructor has no parameters

Summary (cont’d.)

• Abstract data type (ADT): data type that
separates the logical properties from the
implementation details

• A public static member, function or
data, of a class can be accessed using the class
name and the scope resolution operator

• Static data members of a class exist even
when no object of the class type exists

• Instance variables: non-static data members

UNIT-3
C++ Inheritance

One of the most important concepts in object-oriented
programming is that of inheritance. Inheritance allows us to
define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an
opportunity to reuse the code functionality and fast
implementation time.

When creating a class, instead of writing completely new data
members and member functions, the programmer can
designate that the new class should inherit the members of an
existing class. This existing class is called the base class, and the
new class is referred to as the derived class.

C++ Inheritance

Inheritance is the process by which new classes called derived
classes are created from existing classes called base classes.

The derived classes have all the features of the base class and
the programmer can choose to add new features specific to the
newly created derived class.

C++ Inheritance

General Format for implementing the concept of Inheritance:

class derived_classname: access specifier baseclassname

For example, if the base class is MyClass and the derived class is
sample it is specified as:

class sample: public MyClass

The above makes sample have access to both public and protected
variables of base class MyClass

C++ Inheritance

public, private and protected access specifiers:

1 If a member or variables defined in a class is private, then they
are accessible by members of the same class only and cannot be
accessed from outside the class.

2 Public members and variables are accessible from outside the
class.

3 Protected access specifier is a stage between private and public.
If a member functions or variables defined in a class are
protected, then they cannot be accessed from outside the class
but can be accessed from the derived class.

C++ Inheritance

Inheritance Example:

class MyClass

{ public:
MyClass(void) { x=0; }
void f(int n1)
{ x= n1*5;}
void output(void) { cout<<x; }
private:
int x;

};

C++ Inheritance

Inheritance Example:

class sample: public MyClass
{ public:
sample(void) { s1=0; }
void f1(int n1)

{ s1=n1*10;}
void output(void)
{ MyClass::output(); cout << s1; }
private:
int s1;
};

C++ Inheritance

Inheritance Example:

int main(void)
{ sample s;

s.f(10);
s.output();
s.f1(20);
s.output();

}

The output of the above program is
50
200

C++ Inheritance

1. Single class Inheritance:

Single inheritance is the one where you have a single
base class and a single derived class.

Types of Inheritance

Class Employee

Class Manager

It is a Base class (super)

it is a sub class (derived)

2. Multilevel Inheritance:
In Multi level inheritance, a class inherits its properties
from another derived class.

Types of Inheritance

Class A

Class B

it is a Base class (super) of B

it is a sub class (derived) of A
and base class of class C

Class C derived class(sub) of class B

3. Multiple Inheritances:

In Multiple inheritances, a derived class inherits from
multiple base classes. It has properties of both the base
classes.

Types of Inheritance

Class A Class B Base class

Class C Derived class

4. Hierarchical Inheritance:

In hierarchical Inheritance, it's like an inverted tree. So
multiple classes inherit from a single base class. It's
quite analogous to the File system in a unix based
system.

Types of Inheritance

Class A

Class B Class CClass D

5. Hybrid Inheritance:

In this type of inheritance, we can have mixture of
number of inheritances but this can generate an error
of using same name function from no of classes, which
will bother the compiler to how to use the functions.

Therefore, it will generate errors in the program. This
has known as ambiguity or duplicity.

Ambiguity problem can be solved by using virtual
base classes

Types of Inheritance

Types of Inheritance

Class A

Class B

Class D

Class C

5. Hybrid Inheritance:

C++ Inheritance

• Inheritance = the “Is a” Relationship

• A poodle is a dog

• A car is a vehicle

• A tree is a plant

• A rectangle is a shape

• A football player is a an athlete

• Base Class is the General Class

• Derived Class is the Specialized Class

Insect

Class

members

Grasshopper

Class

members

C++ Inheritance

C++ Inheritance

• Syntax
class B {

int I;

public:

void Set_I(int X){I=X;}

int Get_I() {return I;}

};

class D : public B {

int J;

public:

void Set_J(int X)

{J = X;}

int Mul()

{return J * Get_I();}

// J * I  Compile error!

};

Base Class

Access

Specification

Access Specification: Public

- Public members of Base are public
members of Derived

- Private members of Base remain
private members, but are inherited by the
Derived class.

i.e. “They are invisible to the
Derived class”

int main() {

D ob;

ob.Set_J(10);

ob.Set_I(4);

// ob.I = 8; Compile error!

cout << ob.Mul() << endl;

return 0;

} // end main

B

Class //Base

members

D

Class //Derived

members

C++ Inheritance

• A base class in not exclusively “owned” by a
derived class. A base class can be inherited by
any number of different classes.

• There may be times when you want to keep a
member of a base class private but still permit
a derived class access to it.
SOLUTION: Designate the data as protected.

C++ Inheritance

• Protected Data Inherited as Public

Aclass Base {

protected:

int a, b;

public:

void Setab(int n, int m)

{ a = n; b = m;}

};

Aclass Derived: public Base {

int c;

public:

void Setc(int x) { c = x;}

void Showabc() {

cout << a << “ “ << b << “ “ << c << endl;

}

};

int main() {

Derived ob;

ob.Setab(1,2);

ob.Setc(3);

ob.Showabc();

//ob.a = 5 NO! NO!

return 0;

} // end main

Private members of the base class are always
private to the derived class regardless of the
access specifier.

C++ Inheritance

• Public Access Specifier
– Private members of Base remain private members and are

inaccessible to the derived class.

– Public members of Base are public members of Derived

BUT

– Protected members of a base class are accessible to
members of any class derived from that base.

Protected members, like private members, are not
accessible outside the base or derived classes.

C++ Inheritance

• But when a base class is inherited as protected,
public and protected members of the base class become
protected members of the derived class.

Aclass Derived: protected Base {

int c;

public:

void Setc(int x) { c = x;}

void Showabc() {

cout << a << “ “ << b << “ “ << c << endl;

}

};

int main() {

Derived ob;

//ob.Setab(1,2); ERROR

//ob.a = 5; NO! NO!

ob.Setc(3);

ob.Showabc();

return 0;

} // end main

Aclass Base {

protected:

int a, b;

public:

void Setab(int n, int m)

{ a = n; b = m;}

};

Private members of the base class are always private to
the derived class regardless of the access specifier

C++ Inheritance

• Protected Access Specifier
– Private members of the base class are inaccessible

to the derived class.

– Public members of the base class become
protected members of the derived class.

– Protected members of the base class become
protected members of the derived class.

i.e. only the public members of the derived class are
accessible by the user application.

Private members of the base class are always
private to the derived class regardless of the
access specifier

C++ Inheritance

• Constructors & Destructors

– When a base class and a derived class both have
constructor and destructor functions

• Constructor functions are executed in order of
derivation – base class before derived class.

• Destructor functions are executed in reverse order –
the derived class’s destructor is executed before the
base class’s destructor.

– A derived class does not inherit the constructors
of its base class.

C++ Inheritance

class Base {

public:

Base() { cout << “Constructor Base Class\n”;}

~Base() {cout << “Destructing Base Class\n”;}

};

class Derived : public Base {

public:

Derived() { cout << Constructor Derived Class\n”;}

~Derived(){ cout << Destructing Derived Class\n”;}

};

int main() {

Derived ob;

return o;

}

---- OUTPUT ----

Constructor Base Class

Constructor Derived Class

Destructing Derived Class

Destructing Base Class

C++ Inheritance

• Passing an argument to a derived class’s constructor

Class Base {

public:

Base() {cout << “Constructor Base Class\n”;}

~Base(){cout << “Destructing Base Class\n”;}

};

Class Derived : public Base {

int J;

public:

Derived(int X) {

cout << Constructor Derived Class\n”;

J = X;

}

~Derived(){ cout << Destructing Derived Class\n”;}

void ShowJ() { cout << “J: “ << J << “\n”; }

};

int main() {

Derived Ob(10);

Ob.ShowJ();

return 0;

} // end main

C++ Inheritance

• Arguments to both Derived and Base Constructors

Class Base {

int I;

public:

Base(int Y) {

cout << “Constructor Base Class\n”;

I = Y;}

~Base(){cout << “Destructing Base Class\n”;}

void ShowI() { cout << “I: “ << I << endl; }

};

Class Derived : public Base {

int J;

public:

Derived(int X) : Base (X) {

cout << Constructor Derived Class\n”;

J = X;

}

~Derived(){ cout << Destructing Derived Class\n”;}

void ShowJ() { cout << << “J:” << J << “\n”; }

};

int main() {

Derived Ob(10);

Ob.ShowI();

Ob.ShowJ();

return 0;

} // end main

C++ Inheritance

• Different arguments to the Base – All arguments to the Derived.

Class Base {

int I;

public:

Base(int Y) {

cout << “Constructor Base Class\n”;

I = Y;}

~Base(){cout << “Destructing Base Class\n”;}

void ShowI() { cout << “I: “ << I << endl; }

};

Class Derived : public Base {

int J;

public:

Derived(int X, int Y) : Base (Y) {

cout << Constructor Derived Class\n”;

J = X;

}

~Derived(){ cout << Destructing Derived Class\n”;}

void ShowJ() { cout << << “J:” << J << “\n”; }

};

int main() {

Derived Ob(5,8);

Ob.ShowI();

Ob.ShowJ();

return 0;

} // end main

C++ Inheritance

• OK – If Only Base has Argument
Class Base {

int I;

public:

Base(int Y) {

cout << “Constructor Base Class\n”;

I = Y;}

~Base(){cout << “Destructing Base Class\n”;}

void ShowI() { cout << “I: “ << I << endl; }

};

Class Derived : public Base {

int J;

public:

Derived(int X) : Base (X) {

cout << Constructor Derived Class\n”;

J = 0; // X not used here

}

~Derived(){ cout << Destructing Derived Class\n”;}

void ShowJ() { cout << << “J:” << J << “\n”; }

};

int main() {

Derived Ob(10);

Ob.ShowI();

Ob.ShowJ();

return 0;

} // end main

C++ Inheritance

• Multiple Inheritance – Inheriting more than one base class

1. Derived class can be used as a base class for
another derived class
(multilevel class hierarchy)

2. A derived class can directly inherit more than
one base class. 2 or more base classes are
combined to help create the derived class

C++ Inheritance

• Multiple Inheritance
1. Multilevel Class Hierarchy

– Constructor functions of all classes are called in order of derivation: B1, D1, D2

– Destructor functions are called in reverse order

2. When a derived class directly inherits multiple base classes…
– Access_Specifiers { public, private, protected} can be different
– Constructors are executed in the order left to right, that the base classes are

specified.
– Destructors are executed in the opposite order.

class Derived_Class_Name: access Base1,
access Base2,… access BaseN

{

//.. body of class

} end Derived_Class_Name

D2

B1

D1

D

B1 B2

C++ Inheritance
• Derived class inherits a class derived from another class.
class B1 {

int A;

public:

B1(int Z) { A = Z;}

int GetA() { return A; }

};

class D1 : public B1 {

int B;

public:

D1(int Y, int Z) : B1 (Z) { B = Y; }

void GetB() { return B; }

};

Class D2 : public D1 {

int C;

public:

D2 (int X, int Y, int Z) : D1 (Y, Z)) { C = X; }

void ShowAll () {

cout << GetA() << “ “ << GetB() << “ “ << C << endl; }

};

Because bases are inherited as public,
D2 has access to public elements of both B1 and D1

int main() {

D2 Ob(5,7,9);

Ob.ShowAll();

// GetA & GetB are still public here

cout << Ob.GetA() << “ “

<< Ob.GetB() << endl;

return 0;

} // end main

C++ Inheritance

class B1 {

int A;

public:

B1(int Z) { A = Z;}

int GetA() { return A; }

};

class B2 {

int B;

public:

B2 (int Y) { B = Y; }

void GetB() { return B; }

};

class D : public B1, public B2 {

int C;

public:

D (int X, int Y, int Z) : B1(Z), B2 (Y) { C = X; }

void ShowAll () {

cout << GetA() << “ “ << GetB() << “ “ << C << endl; }

};

int main() {

D Ob(5,7,9);

Ob.ShowAll();

return 0;

} // end main

Derived Class Inherits Two Base Classes

D

B1 B2

C++ Inheritance

• Inheritance Multiple Base Classes
(constructor and destructor)

class B1 {

public:

B1() {cout << “Constructing B1\n”; }

~B1() {cout << “Destructing B1\n”; }

};

class B2 {

public:

B2() {cout << “Constructing B2\n”; }

~B2() {cout << “Destructing B2\n”; }

};

class D : public B1, public B2 {

public:

D() {cout << “Constructing D\n”; }

~D() {cout << “Destructing D\n”; }

};

int main () {

D ob;

return 0;

} // end main

----OUTPUT----

Constructing B1

Constructing B2

Constructing D

Destructing D

Destructing B2

Destructing B1

D

B1 B2

1 23

C++ Inheritance

• Virtual Base Class

–Problem:
The Base B is
inherited twice
by D3.

– There is ambiguity!

– Solution: mechanism by which only one copy of B
will be included in D3.

D1

B B

D2

D3

C++ Inheritance

class B {

public:

int I;

};

class D1 : virtual public B {

public:

int J;

};

class D2 : virtual public B {

public:

int K;

};

class D3 : public D1, public D2 {

public:

int product {return I * J * K; }

};

int main() {

D3 ob;

ob.I = 15; //must be virtual

// else compile

// time error

ob.J = 21;

ob.K = 26;

cout << “Product: “

<< ob.product() << endl;

return 0;

} // end main

C++ Inheritance

• A Derived class does not inherit the constructors
of its base class.

• Good Advice: You can and should include a call to
one of the base class constructors when you
define a constructor for a derived class.

• If you do not include a call to a base class
constructor, then the default (zero argument)
constructor of the base class is called
automatically.

• If there is no default constructor for the base
class, an error occurs.

C++ Inheritance

• If the programmer does not define a copy
constructor in a derived class (or any class), C++
will auto-generate a copy constructor for you.
(Bit-wise copy)

• Overloaded assignment operators are not
inherited, but can be used.

• When the destructor for the derived class is
invoked, it auto-invokes the destructor of the
base class. No need to explicitly call the base
class destructor.

C++ Inheritance

• A derived class inherits all the member functions (and
member variables) that belong to the base class –
except for the constructor.

• If a derived class requires a different implementation
for an inherited member function, the function may be
redefined in the derived class. (not the same
overloading)
– List its declaration in the definition of the derived class

(even though it is the same as the base class).
– Redefined function will have the same number and types

of parameters. I.e. signature is the same.
– Ok to use both (must use the base class qualifier to

distinguish between the 2)

C++ Inheritance

• Virtual Functions
– Background:

• A pointer declared as a pointer to a base class can also
be used to point to any class derived from that base.

• We can use a base pointer to point to a derived object,
but you can access only those members of the derived
object that were inherited from the base. The base
pointer has knowledge only of the base class; it knows
nothing about the members added by the derived class.

• A pointer of the derived type cannot (should not) be
used to access an object of the base class.

C++ Inheritance

• Virtual Functions-
Background

int main() {

Base *ptr;

Base BaseOb;

Derived DerivedOb;

ptr = &BaseOb;

ptrSetX(15);

cout <<“Base X: “

<< ptrGetX() << endl;

ptr = &DerivedOb;

ptrSetX(29);

DerivedOb.SetY(42); // cannot use ptr

cout << “Derived Object X: “

<< ptrGetX() << endl;

cout << “Derived Object Y: “

<< DerivedOb.GetY() << endl;

return 0;

} // end main

class Base {

int X;

public:

void SetX(int I) { X = I;}

int GetX() { return X:}

};

class Derived : public Base {

int Y;

public:

void SetY(int I) { Y = I;}

int GetY() { return Y;}

};

C++ Inheritance

• Virtual Functions
– When the programmer codes “virtual” for a function, the programmer is

saying, “ I do not know how this function is implemented”.
– Technique of waiting until runtime to determine the implementation of a

procedure is called late binding or dynamic binding.
– A virtual function is a member function that is declared within a base class and

redefined by a derived class.
– Demonstrates “One interface, multiple methods” philosophy that is

polymorphism.
– “Run-time polymorphism”- when a virtual function is called through a pointer.
– When a virtual function is redefined by a derived class,

the keyword virtual is not needed.
– “A base pointer points to a derived object that contains a virtual function and

that virtual function is called through that pointer, C++ determines which
version of that function will be executed based upon the type of object being
pointed to by the pointer.” Schildt

C++ Inheritance

• Virtual Functions
– Exact same prototype (Override not Overload)

Signature + return type

– Can only be class members

– Destructors can be virtual; constructors cannot.

– Done at runtime!

– Late Binding: refers to events that must occur at run
time.

– Early Binding: refers to those events that can be
known at compile time.

C++ Inheritance
• Virtual Functions

class Base {

public:

int I;

base(int X) { I = X;}

virtual void func() {

cout << “Using Base version of func(): “;

cout << I << endl;

}

};

class D1 ; public Base {

public:

D1(int X) : base(X) {}

void func() {

cout << Using D1’s version of func(): “;

cout << I*I << endl;

}

};

class D2 : public Base {

public:

D2(int X) : base(X) {}

void func() {

cout << Using D2’s version of func(): “;

cout << I+I << endl;

}

};

int maint() {

Base *ptr;

Base BaseOb(10);

D1 D1Ob(10);

D2 D2Ob(10);

ptr = &BaseOb;

ptrfunc(); // use Base’s func()

ptr = &D1Ob;

ptrfunc(); // use D1’s func()

ptr = &D2Ob;

ptrfunc()’ // use D2’s func()

return 0;

}

Polymorphic class
contains a virtual

function.

----OUTPUT----

Using Base version of func(): 10

Using D1’s version of func(): 100

Using D2’s version of func(): 20

If the derived class does not override a virtual function,
the function defined within its base class is used.

C++ Inheritance
class Area {

double dim1, dim2;

public :

void SetArea(double d1, double d2) {

dim1 = d1;

dim2 = d2;

}

void GetDim (double &d1, double &d2) {

d1 = dim1;

d2 = dim2;

}

virtual double GetArea() {

cout << “DUMMY DUMMY OVERRIDE function”;

return 0.0;

}

class Rectangle : public Area {

public :

double GetArea() {

double temp1, temp2

GetDim (temp1, temp2);

return temp1 * temp2;

}

};

class Triangle : public Area {

public :

double GetArea() {

double temp1, temp2

GetDim (temp1, temp2);

return 0.5 temp1 * temp2;

}

};

int main () {

Area *ptr;

Rectangle R;

Triangle T;

R.SetArea(3.3, 4.5);

T.SetArea(4.0, 5.0);

ptr = &R;

cout << “RECTANGLE_AREA: “

<< ptrGetArea() << endl;

ptr = &T;

cout << “TRIANGLE_AREA: “

<< ptrGetArea() << endl;

return 0;

} // end main

When there is no meaningful action for a
base class virtual function to perform, the
implication is that any derived class
MUST override this function. C++
supports pure virtual functions to do this.

Virtual double GetArea() = 0; // pure virtual

C++ Inheritance

• Virtual Functions
– When a class contains at least one pure virtual

function, it is referred to as an abstract class.

– An abstract class contains at least one function for
which no body exists,
so an abstract class exists mainly to be inherited.

– Abstract classes do not stand alone.

– If Class B has a virtual function called f(), and D1
inherits B and D2 inherits D1, both D1 and D2 can
override f() relative to their respective classes.

UNIT-4

C++ Input/output

Introduction

• Many C++ I/O features are object-oriented

– Use references, function overloading and operator overloading

• C++ uses type safe I/O
– Each I/O operation is automatically performed in a manner

sensitive to the data type

• Extensibility
– Users may specify I/O of user-defined types as well as standard

types

Streams

• Stream

– A transfer of information in the form of a sequence of
bytes

• I/O Operations:

– Input: A stream that flows from an input device (i.e.:
keyboard, disk drive, network connection) to main
memory

– Output: A stream that flows from main memory to an
output device (i.e.: screen, printer, disk drive, network
connection)

Streams

• I/O operations are a bottleneck
– The time for a stream to flow is many times larger than the time it

takes the CPU to process the data in the stream

• Low-level I/O
– Unformatted

– Individual byte unit of interest

– High speed, high volume, but inconvenient for people

• High-level I/O
– Formatted

– Bytes grouped into meaningful units: integers, characters, etc.

– Good for all I/O except high-volume file processing

Iostream Library Header Files

• iostream library:

– <iostream.h>: Contains cin, cout, cerr and clog
objects

– <iomanip.h>: Contains parameterized stream
manipulators

Stream Input/Output Classes and Objects

• ios:

– istream and ostream inherit from ios
• iostream inherits from istream and ostream.

• << (left-shift operator)
– Overloaded as stream insertion operator

• >> (right-shift operator)
– Overloaded as stream extraction operator

– Both operators used with cin, cout, cerr, clog, and with user-
defined stream objects

Stream Input/Output Classes and Objects

ios

iostream

ostreamistream

Figure 21.1 Portion of the stream I/O class hierarchy.

Stream Input/Output Classes and Objects

• istream: input streams
cin >> grade;
• cin knows what type of data is to be assigned to
grade (based on the type of grade).

• ostream: output streams
– cout << grade;

• cout knows the type of data to output

– cerr << errorMessage;
• Unbuffered - prints errorMessage immediately.

– clog << errorMessage;
• Buffered - prints errorMessage as soon as output

buffer is full or flushed

Stream Input/Output Classes and Objects

Figure 21.2 Portion of stream-I/O class hierarchy with key file-processing classes.

ios

iostream

ostreamistream

fstream

ofstreamifstream

Stream Output

• ostream: performs formatted and unformatted
output
– Uses put for characters and write for unformatted output

– Output of integers in decimal, octal and hexadecimal

– Varying precision for floating points

– Formatted text outputs

Stream-Insertion Operator

• << is overloaded to output built-in types
– Can also be used to output user-defined types

– cout << ‘\n’;

• Prints newline character

– cout << endl;

• endl is a stream manipulator that issues a newline character
and flushes the output buffer

– cout << flush;

• flush flushes the output buffer

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

1 // Fig. 21.3: fig21_03.cpp

2 // Outputting a string using stream insertion.

3 #include <iostream>

4

5 using std::cout;

6

7 int main()

8 {

9 cout << "Welcome to C++!\n";

10

11 return 0;

12 } // end function main

fig21_03.cpp

Program Output
Welcome to C++!

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

1 // Fig. 21.4: fig21_04.cpp

2 // Outputting a string using two stream insertions.

3 #include <iostream>

4

5 using std::cout;

6

7 int main()

8 {

9 cout << "Welcome to ";

10 cout << "C++!\n";

11

12 return 0;

13 } // end function main

fig21_04.cpp

Program OutputWelcome to C++!

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

1 // Fig. 21.5: fig21_05.cpp

2 // Using the endl stream manipulator.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 int main()

9 {

10 cout << "Welcome to ";

11 cout << "C++!";

12 cout << endl; // end line stream manipulator

13

14 return 0;

15 } // end function main

fig21_05.cpp

Program Output
Welcome to C++!

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

1 // Fig. 21.6: fig21_06.cpp

2 // Outputting expression values.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 int main()

9 {

10 cout << "47 plus 53 is ";

11

12 // parentheses not needed; used for clarity

13 cout << (47 + 53); // expression

14 cout << endl;

15

16 return 0;

17 } // end function main

fig21_06.cpp

Program Output
47 plus 53 is 100

Cascading Stream-Insertion/Extraction

Operators

• << : Associates from left to right, and returns a
reference to its left-operand object (i.e. cout).
– This enables cascading

cout << "How" << " are" << " you?";

Make sure to use parenthesis:

cout << "1 + 2 = " << (1 + 2);

NOT

cout << "1 + 2 = " << 1 + 2;

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_07.cpp

Program Output47 plus 53 is 100

1 // Fig. 21.7: fig21_07.cpp

2 // Cascading the overloaded << operator.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 int main()

9 {

10 cout << "47 plus 53 is " << (47 + 53) << endl;

11

12 return 0;

13 } // end function main

Output of char * Variables

• << will output a variable of type char * as a
string

• To output the address of the first character of that
string, cast the variable as type void *

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_08.cpp

Program Output
Value of string is: test

Value of static_cast< void *>(string) is:

0046C070

1 // Fig. 21.8: fig21_08.cpp

2 // Printing the address stored in a char* variable

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 int main()

9 {

10 const char *string = "test";

11

12 cout << "Value of string is: " << string

13 << "\nValue of static_cast< void * >(string) is: "

14 << static_cast< void * >(string) << endl;

15 return 0;

16 } // end function main

Character Output with Member Function

put;Cascading puts

• put member function
– Outputs one character to specified stream

cout.put('A');

– Returns a reference to the object that called it, so may be
cascaded

cout.put('A').put('\n');

– May be called with an ASCII-valued expression

cout.put(65);

• Outputs A

Stream Input

• >> (stream-extraction)
– Used to perform stream input

– Normally ignores whitespaces (spaces, tabs, newlines)

– Returns zero (false) when EOF is encountered, otherwise
returns reference to the object from which it was invoked (i.e.
cin)

• >> controls the state bits of the stream
– failbit set if wrong type of data input

– badbit set if the operation fails

Stream-Extraction Operator

• >> and << have relatively high precedence
– Conditional and arithmetic expressions must be contained in

parentheses

• Popular way to perform loops

while (cin >> grade)

• Extraction returns 0 (false) when EOF encountered, and
loop ends

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

1 // Fig. 21.9: fig21_09.cpp

2 // Calculating the sum of two integers input from the keyboard

3 // with cin and the stream-extraction operator.

4 #include <iostream>

5

6 using std::cout;

7 using std::cin;

8 using std::endl;

9

10 int main()

11 {

12 int x, y;

13

14 cout << "Enter two integers: ";

15 cin >> x >> y;

16 cout << "Sum of " << x << " and " << y << " is: "

17 << (x + y) << endl;

18

19 return 0;

20 } // end function main

fig21_09.cpp

Program OutputEnter two integers: 30 92

Sum of 30 and 92 is: 122

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_10.cpp

Program Output

Enter two integers: 8 8

8 is equal to 8

1 // Fig. 21.10: fig21_10.cpp

2 // Avoiding a precedence problem between the stream-insertion

3 // operator and the conditional operator.

4 // Need parentheses around the conditional expression.

5 #include <iostream>

6

7 using std::cout;

8 using std::cin;

9 using std::endl;

10

11 int main()

12 {

13 int x, y;

14

15 cout << "Enter two integers: ";

16 cin >> x >> y;

17 cout << x << (x == y ? " is" : " is not")

18 << " equal to " << y << endl;

19

20 return 0;

21 } // end function main

 Enter two integers: 7 5

7 is not equal to 5

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_11.cpp

1 // Fig. 21.11: fig21_11.cpp

2 // Stream-extraction operator returning false on end-of-file.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 int grade, highestGrade = -1;

12

13 cout << "Enter grade (enter end-of-file to end): ";

14 while (cin >> grade) {

15 if (grade > highestGrade)

16 highestGrade = grade;

17

18 cout << "Enter grade (enter end-of-file to end): ";

19 } // end while

20

21 cout << "\n\nHighest grade is: " << highestGrade << endl;

22 return 0;

23 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

Program Output

Enter grade (enter end-of-file to end): 67

Enter grade (enter end-of-file to end): 87

Enter grade (enter end-of-file to end): 73

Enter grade (enter end-of-file to end): 95

Enter grade (enter end-of-file to end): 34

Enter grade (enter end-of-file to end): 99

Enter grade (enter end-of-file to end): ^Z

Highest grade is: 99

21.4.2 get and getlineMember Functions

• cin.eof(): returns true if end-of-file has
occurred on cin

• cin.get(): inputs a character from stream
(even white spaces) and returns it

• cin.get(c): inputs a character from stream
and stores it in c

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_12.cpp

1 // Fig. 21.12: fig21_12.cpp

2 // Using member functions get, put and eof.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 char c;

12

13 cout << "Before input, cin.eof() is " << cin.eof()

14 << "\nEnter a sentence followed by end-of-file:\n";

15

16 while ((c = cin.get()) != EOF)

17 cout.put(c);

18

19 cout << "\nEOF in this system is: " << c;

20 cout << "\nAfter input, cin.eof() is " << cin.eof() << endl;

21 return 0;

22 } // end function main

Stream Manipulators

• Stream manipulator capabilities
– Setting field widths

– Setting precisions

– Setting and unsetting format flags

– Setting the fill character in fields

– Flushing streams

– Inserting a newline in the output stream and flushing the stream

– Inserting a null character in the output stream and skipping
whitespace in the input stream

Integral Stream Base: dec, oct, hex and

setbase
• oct, hex or dec:

– Change base of which integers are interpreted from the stream.

Example:

int n = 15;

cout << hex << n;

– Prints "F"

• setbase:
– Changes base of integer output

– Load <iomanip>

– Accepts an integer argument (10, 8, or 16)

cout << setbase(16) << n;

– Parameterized stream manipulator - takes an argument

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_16.cpp (Part 1

of 2)

1 // Fig. 21.16: fig21_16.cpp

2 // Using hex, oct, dec and setbase stream manipulators.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 #include <iomanip>

10

11 using std::hex;

12 using std::dec;

13 using std::oct;

14 using std::setbase;

15

16 int main()

17 {

18 int n;

19

20 cout << "Enter a decimal number: ";

21 cin >> n;

22

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_16.cpp (Part 2

of 2)

Program OutputEnter a decimal number: 20

20 in hexadecimal is: 14

20 in octal is: 24

20 in decimal is: 20

23 cout << n << " in hexadecimal is: "

24 << hex << n << '\n'

25 << dec << n << " in octal is: "

26 << oct << n << '\n'

27 << setbase(10) << n << " in decimal is: "

28 << n << endl;

29

30 return 0;

31 } // end function main

Floating-Point Precision (precision,

setprecision)

• precision

– Member function

– Sets number of digits to the right of decimal point

cout.precision(2);

– cout.precision() returns current precision setting

• setprecision
– Parameterized stream manipulator

– Like all parameterized stream manipulators, <iomanip> required

– Specify precision:

cout << setprecision(2) << x;

• For both methods, changes last until a different
value is set

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_17.cpp (Part 1

of 2)

1 // Fig. 21.17: fig21_17.cpp

2 // Controlling precision of floating-point values

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 #include <iomanip>

10

11 using std::ios;

12 using std::setiosflags;

13 using std::setprecision;

14

15 #include <cmath>

16

17 int main()

18 {

19 double root2 = sqrt(2.0);

20 int places;

21

22 cout << setiosflags(ios::fixed)

23 << "Square root of 2 with precisions 0-9.\n"

24 << "Precision set by the "

25 << "precision member function:" << endl;

26

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_17.cpp (Part 2

of 2)

27 for (places = 0; places <= 9; places++) {

28 cout.precision(places);

29 cout << root2 << '\n';

30 } // end for

31

32 cout << "\nPrecision set by the "

33 << "setprecision manipulator:\n";

34

35 for (places = 0; places <= 9; places++)

36 cout << setprecision(places) << root2 << '\n';

37

38 return 0;

39 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

Program Output

Square root of 2 with precisions 0-9.

Precision set by the precision member function:

1

1.4

1.41

1.414

1.4142

1.41421

1.414214

1.4142136

1.41421356

1.414213562

Precision set by the setprecision manipulator:

1

1.4

1.41

1.414

1.4142

1.41421

1.414214

1.4142136

1.41421356

1.414213562

Field Width(setw, width)

• ios width member function
– Sets field width (number of character positions a value should be

output or number of characters that should be input)

– Returns previous width

– If values processed are smaller than width, fill characters inserted

as padding

– Values are not truncated - full number printed

– cin.width(5);

• setw stream manipulator
cin >> setw(5) >> string;

• Remember to reserve one space for the null
character

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_18.cpp

1 // fig21_18.cpp

2 // Demonstrating the width member function

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 int w = 4;

12 char string[10];

13

14 cout << "Enter a sentence:\n";

15 cin.width(5);

16

17 while (cin >> string) {

18 cout.width(w++);

19 cout << string << endl;

20 cin.width(5);

21 } // end while

22

23 return 0;

24 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

Program Output

Enter a sentence:

This is a test of the width member function

This

is

a

test

of

the

widt

h

memb

er

func

tion

User-Defined Manipulators

• We can create our own stream manipulators
– bell

– ret (carriage return)

– tab

– endLine

• Parameterized stream manipulators
– Consult installation manuals

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_19.cpp (Part 1

of 2)

1 // Fig. 21.19: fig21_19.cpp

2 // Creating and testing user-defined, nonparameterized

3 // stream manipulators.

4 #include <iostream>

5

6 using std::ostream;

7 using std::cout;

8 using std::flush;

9

10 // bell manipulator (using escape sequence \a)

11 ostream& bell(ostream& output) { return output << '\a'; }

12

13 // ret manipulator (using escape sequence \r)

14 ostream& ret(ostream& output) { return output << '\r'; }

15

16 // tab manipulator (using escape sequence \t)

17 ostream& tab(ostream& output) { return output << '\t'; }

18

19 // endLine manipulator (using escape sequence \n

20 // and the flush member function)

21 ostream& endLine(ostream& output)

22 {

23 return output << '\n' << flush;

24 } // end function endLine

25

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_19.cpp (Part 2

of 2)

Program Output
Testing the tab manipulator:

a b c

Testing the ret and bell manipulators:

-----.....

26 int main()

27 {

28 cout << "Testing the tab manipulator:" << endLine

29 << 'a' << tab << 'b' << tab << 'c' << endLine

30 << "Testing the ret and bell manipulators:"

31 << endLine << "..........";

32 cout << bell;

33 cout << ret << "-----" << endLine;

34 return 0;

35 } // end function main

21.7 Stream Format States

• Format flags
– Specify formatting to be performed during stream I/O operations

• setf, unsetf and flags
– Member functions that control the flag settings

Stream Error States

• eofbit
– Set for an input stream after end-of-file encountered

– cin.eof() returns true if end-of-file has been encountered on
cin

• failbit
– Set for a stream when a format error occurs

– cin.fail() - returns true if a stream operation has failed

– Normally possible to recover from these errors

Stream Error States

• badbit
– Set when an error occurs that results in data loss

– cin.bad() returns true if stream operation failed

– normally nonrecoverable

• goodbit
– Set for a stream if neither eofbit, failbit or badbit are set

– cin.good() returns true if the bad, fail and eof functions

would all return false.

– I/O operations should only be performed on “good” streams

• rdstate
– Returns the state of the stream

– Stream can be tested with a switch statement that examines all
of the state bits

– Easier to use eof, bad, fail, and good to determine state

Stream Error States

• clear
– Used to restore a stream’s state to “good”

– cin.clear() clears cin and sets goodbit for the stream

– cin.clear(ios::failbit) actually sets the failbit

• Might do this when encountering a problem with a user-
defined type

• Other operators
– operator!

• Returns true if badbit or failbit set

– operator void*

• Returns false if badbit or failbit set

– Useful for file processing

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_29.cpp (Part 1

of 2)

1 // Fig. 21.29: fig21_29.cpp

2 // Testing error states.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7 using std::cin;

8

9 int main()

10 {

11 int x;

12 cout << "Before a bad input operation:"

13 << "\ncin.rdstate(): " << cin.rdstate()

14 << "\n cin.eof(): " << cin.eof()

15 << "\n cin.fail(): " << cin.fail()

16 << "\n cin.bad(): " << cin.bad()

17 << "\n cin.good(): " << cin.good()

18 << "\n\nExpects an integer, but enter a character: ";

19 cin >> x;

20

21 cout << "\nAfter a bad input operation:"

22 << "\ncin.rdstate(): " << cin.rdstate()

23 << "\n cin.eof(): " << cin.eof()

24 << "\n cin.fail(): " << cin.fail()

25 << "\n cin.bad(): " << cin.bad()

26 << "\n cin.good(): " << cin.good() << "\n\n";

27

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson
Education Inc. All Rights Reserved.

fig21_29.cpp (Part 2

of 2)

Program OutputBefore a bad input operation:

cin.rdstate(): 0

cin.eof(): 0

cin.fail(): 0

cin.bad(): 0

cin.good(): 1

Expects an integer, but enter a character: A

After a bad input operation:

cin.rdstate(): 2

cin.eof(): 0

cin.fail(): 1

cin.bad(): 0

cin.good(): 0

After cin.clear()

cin.fail(): 0

cin.good(): 1

28 cin.clear();

29

30 cout << "After cin.clear()"

31 << "\ncin.fail(): " << cin.fail()

32 << "\ncin.good(): " << cin.good() << endl;

33 return 0;

34 } // end function main

UNIT-5

Exception Handling

Introduction

• Errors can be dealt with at place error occurs
– Easy to see if proper error checking implemented

– Harder to read application itself and see how code works

• Exception handling
– Makes clear, robust, fault-tolerant programs

– C++ removes error handling code from "main line" of program

• Common failures
– new not allocating memory

– Out of bounds array subscript

– Division by zero

– Invalid function parameters

Introduction

• Exception handling - catch errors before they
occur
– Deals with synchronous errors (i.e., Divide by zero)

– Does not deal with asynchronous errors - disk I/O completions,
mouse clicks - use interrupt processing

– Used when system can recover from error

• Exception handler - recovery procedure

– Typically used when error dealt with in different place than where
it occurred

– Useful when program cannot recover but must shut down cleanly

• Exception handling should not be used for
program control
– Not optimized, can harm program performance

Introduction

• Exception handling improves fault-tolerance
– Easier to write error-processing code

– Specify what type of exceptions are to be caught

• Most programs support only single threads
– Techniques in this chapter apply for multithreaded OS as well

(windows NT, OS/2, some UNIX)

• Exception handling another way to return control
from a function or block of code

When Exception Handling Should Be Used

• Error handling should be used for
– Processing exceptional situations

– Processing exceptions for components that cannot handle them
directly

– Processing exceptions for widely used components (libraries, classes,
functions) that should not process their own exceptions

– Large projects that require uniform error processing

Other Error-Handling Techniques

• Use assert
– If assertion false, the program terminates

• Ignore exceptions
– Use this "technique" on casual, personal programs - not commercial!

• Abort the program
– Appropriate for nonfatal errors give appearance that program functioned correctly

– Inappropriate for mission-critical programs, can cause resource leaks

• Set some error indicator
– Program may not check indicator at all points where error could occur

Other Error-Handling Techniques (II)

• Test for the error condition
– Issue an error message and call exit

– Pass error code to environment

• setjump and longjump
– In <csetjmp>
– Jump out of deeply nested function calls back to an error handler.

– Dangerous - unwinds the stack without calling destructors for automatic objects
(more later)

• Specific errors
– Some have dedicated capabilities for handling them

– If new fails to allocate memory new_handler function executes to deal with
problem

Basics of C++ Exception Handling: try, throw,
catch

• A function can throw an exception object if it
detects an error
– Object typically a character string (error message) or class

object

– If exception handler exists, exception caught and handled

– Otherwise, program terminates

Basics of C++ Exception Handling: try, throw,
catch (II)

• Format
– Enclose code that may have an error in try block

– Follow with one or more catch blocks

• Each catch block has an exception handler

– If exception occurs and matches parameter in catch block,
code in catch block executed

– If no exception thrown, exception handlers skipped and
control resumes after catch blocks

– throw point - place where exception occurred

• Control cannot return to throw point

Throwing an Exception

• throw - indicates an exception has occurred
– Usually has one operand (sometimes zero) of any type

• If operand an object, called an exception object

• Conditional expression can be thrown

– Code referenced in a try block can throw an exception

– Exception caught by closest exception handler

– Control exits current try block and goes to catch handler (if it
exists)

– Example (inside function definition)

if (denominator == 0)

throw DivideByZeroException();

• Throws a dividebyzeroexception object

Throwing an Exception (II)

• Exception not required to terminate program
– However, terminates block where exception occurred

Catching an Exception

• Exception handlers are in catch blocks
– Format: catch(exceptionType parameterName){

exception handling code

}

– Caught if argument type matches throw type

– If not caught then terminate called which (by default) calls
abort

– Example:
catch (DivideByZeroException ex) {

cout << "Exception occurred: " << ex.what()
<<'\n'

}

• Catches exceptions of type DivideByZeroException

Catching an Exception

• catch parameter matches thrown object when
– They are of the same type

• Exact match required - no promotions/conversions allowed

– The catch parameter is a public base class of the thrown
object

– The catch parameter is a base-class pointer/ reference
type and the thrown object is a derived-class pointer/
reference type

– The catch handler is catch(...)

– Thrown const objects have const in the parameter type

Exception Specifications

• Exception specification (throw list)
– Lists exceptions that can be thrown by a function

Example:

int g(double h) throw (a, b, c)
{

// function body
}

– Function can throw listed exceptions or derived types

– If other type thrown, function unexpected called

– throw() (i.e., no throw list) states that function will not throw any
exceptions

• In reality, function can still throw exceptions, but calls
unexpected (more later)

– If no throw list specified, function can throw any exception

Processing Unexpected Exceptions

• Function unexpected
– Calls the function specified with set_unexpected

• Default: terminate

• Function terminate

– Calls function specified with set_terminate

• Default: abort

• set_terminate and set_unexpected
– Prototypes in <exception>

– Take pointers to functions (i.e., Function name)

• Function must return void and take no arguments

– Returns pointer to last function called by terminate or
unexpected

Stack Unwinding

• Function-call stack unwound when exception
thrown and not caught in a particular scope
– Tries to catch exception in next outer try/catch block

– Function in which exception was not caught terminates

• Local variables destroyed

• Control returns to place where function was called

– If control returns to a try block, attempt made to catch exception

• Otherwise, further unwinds stack

– If exception not caught, terminate called

Rethrowing an Exception

• Rethrowing exceptions

– Used when an exception handler cannot process an
exception

– Rethrow exception with the statement:

throw;

• No arguments

• If no exception thrown in first place, calls terminate

– Handler can always rethrow exception, even if it
performed some processing

– Rethrown exception detected by next enclosing try block

Catching an Exception

• Catch all exceptions
catch(...) - catches all exceptions

• You do not know what type of exception occurred

• There is no parameter name - cannot reference the object

• If no handler matches thrown object
– Searches next enclosing try block

• If none found, terminate called

– If found, control resumes after last catch block

– If several handlers match thrown object, first one found is
executed

Catching an Exception

• Unreleased resources
– Resources may have been allocated when exception thrown

– catch handler should delete space allocated by new and
close any opened files

• catch handlers can throw exceptions
– Exceptions can only be processed by outer try blocks

